已知:如圖,在直角坐標(biāo)系中,⊙C與y軸相切于點(diǎn)O,且C點(diǎn)的坐標(biāo)為(1,0),直線l過點(diǎn)A(-1,0)與⊙C切于D點(diǎn).D點(diǎn)坐標(biāo)為    ,在直線l上存在點(diǎn)P,使△APC為等腰三角形,則P點(diǎn)的坐標(biāo)   
【答案】分析:(1)首先根據(jù)題中已給條件求出⊙C的方程表達(dá)式.然后設(shè)出直線1的方程表達(dá)式,根據(jù)直線l過點(diǎn)A(-1,0)與⊙C切于D點(diǎn)可以求出直線1的方程表達(dá)式,即可求出D點(diǎn)坐標(biāo).
(2)分別以A、P、C坐三角形頂點(diǎn),求出不同情況下P點(diǎn)坐標(biāo).
解答:解:如圖所示:
①已知:⊙C與y軸相切于點(diǎn)O,且C點(diǎn)的坐標(biāo)為(1,0),所以可以求出⊙C的表達(dá)式為:(x-1)2+y2=1.
設(shè)直線1的表達(dá)式為:y=kx+b.
因?yàn)镃D=1,AC=2,∠CDA=90°,所以∠DAC=30°,所以k=
將點(diǎn)A坐標(biāo)代入得:=b.
所以直線1的方程式為:y=
將直線1的方程式代入⊙C中可得,
所以點(diǎn)D坐標(biāo)為
②以點(diǎn)P為頂點(diǎn),PA=PC,可知P在y軸上,又因?yàn)镻在直線1上,所以點(diǎn)P坐標(biāo)為,
以點(diǎn)A為頂點(diǎn),AP=AC,所以AP=2,又因?yàn)椤螾AC=30°,所以P到x軸距離為1,所以P點(diǎn)坐標(biāo)為(,1),(,-1);
以點(diǎn)C為頂點(diǎn),CA=CP,所以CP=2,同理可得P點(diǎn)坐標(biāo)為(2,).
所以P點(diǎn)坐標(biāo)為:(0,),(,1),(,-1),(2,).
點(diǎn)評(píng):本題重要考查對(duì)于一次方程的應(yīng)用,此外還用到直線與圓的知識(shí),考查范圍較廣,第二問中的坐標(biāo)要分別以3個(gè)點(diǎn)為頂點(diǎn)來求P點(diǎn)坐標(biāo),以避免遺漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1)已知,矩形ABDC的邊AC=3,對(duì)角線長(zhǎng)為5,將矩形ABDC置于直角坐系內(nèi),點(diǎn)D與原點(diǎn)O重合.且反比例函數(shù)y=
k
x
的圖象的一個(gè)分支位于第一象限.
(1)求點(diǎn)A的坐標(biāo);
(2)若矩形ABDC從圖(1)的位置開始沿x軸的正方向移動(dòng),每秒移動(dòng)1個(gè)單位,1秒后點(diǎn)A剛好落在反比例函數(shù)y=
k
x
的圖象的圖象上,求k的值;
(3)矩形ABCD繼續(xù)向x軸的正方向移動(dòng),AB、AC與反比例函數(shù)圖象分別交于P、Q如圖(2),設(shè)移動(dòng)的總時(shí)間為t(1<t<5),分別寫出△BPD的面積S1、△DCQ的面積S2與t的函數(shù)關(guān)系式;
(4)在(3)的情況下,當(dāng)t為何值時(shí),S2=
10
7
S1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年甘肅省蘭州四中九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖(1)已知,矩形ABDC的邊AC=3,對(duì)角線長(zhǎng)為5,將矩形ABDC置于直角坐系內(nèi),點(diǎn)D與原點(diǎn)O重合.且反比例函數(shù)y=的圖象的一個(gè)分支位于第一象限.
(1)求點(diǎn)A的坐標(biāo);
(2)若矩形ABDC從圖(1)的位置開始沿x軸的正方向移動(dòng),每秒移動(dòng)1個(gè)單位,1秒后點(diǎn)A剛好落在反比例函數(shù)y=的圖象的圖象上,求k的值;
(3)矩形ABCD繼續(xù)向x軸的正方向移動(dòng),AB、AC與反比例函數(shù)圖象分別交于P、Q如圖(2),設(shè)移動(dòng)的總時(shí)間為t(1<t<5),分別寫出△BPD的面積S1、△DCQ的面積S2與t的函數(shù)關(guān)系式;
(4)在(3)的情況下,當(dāng)t為何值時(shí),S2=S1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與y軸交于點(diǎn)A,

與x軸交于點(diǎn)B,與反比例函數(shù)的圖象分別交于點(diǎn)M,N,已知△AOB的面積為1,點(diǎn)M的縱坐

標(biāo)為2,

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出時(shí)x的取值范圍。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆安徽滁州八年級(jí)下期末模擬數(shù)學(xué)試卷(滬科版)(解析版) 題型:解答題

已知:如圖1,平面直角坐標(biāo)系中,四邊形OABC是矩形,點(diǎn)A,C的坐

標(biāo)分別為(6,0),(0,2).點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B,C不重合),過點(diǎn)D作直線=-交折線O-A-B于點(diǎn)E.

(1)在點(diǎn)D運(yùn)動(dòng)的過程中,若△ODE的面積為S,求S與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)如圖2,當(dāng)點(diǎn)E在線段OA上時(shí),矩形OABC關(guān)于直線DE對(duì)稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點(diǎn)D,M,O′A′分別交CB,OA于點(diǎn)N,E.求證:四邊形DMEN是菱形;

(3)問題(2)中的四邊形DMEN中,ME的長(zhǎng)為____________.

    

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(廣西欽州卷)數(shù)學(xué) 題型:解答題

(本題滿分8分)已知四邊形ABCD是邊長(zhǎng)為4的正方形,以AB為直徑在正方形內(nèi)作半圓,P是半圓上的動(dòng)點(diǎn)(不與點(diǎn)A、B重合),連接PA、PB、PC、PD.

    (1)如圖①,當(dāng)PA的長(zhǎng)度等于 

時(shí),∠PAB=60°;

              當(dāng)PA的長(zhǎng)度等于    時(shí),△PAD是等腰三角形;

    (2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角

坐標(biāo)系(點(diǎn)A即為原點(diǎn)O),把△PAD、△PAB、△PBC的面積分別記為S1、S2、S3.坐

標(biāo)為(a,b),試求2 S1 S3-S22的最大值,并求出此時(shí)ab的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案