【題目】如圖,在矩形紙片ABCD中,已知AD=8,折疊紙片,使AB邊與對角線AC重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )
A.3
B.4
C.5
D.6
【答案】D
【解析】解:∵四邊形ABCD是矩形,AD=8,
∴BC=8,
∵△AEF是△AEB翻折而成,
∴BE=EF=3,AB=AF,△CEF是直角三角形,
∴CE=8﹣3=5,
在Rt△CEF中,CF= = =4,
設(shè)AB=x,
在Rt△ABC中,AC2=AB2+BC2 , 即(x+4)2=x2+82 , 解得x=6,
故選:D.
【考點精析】本題主要考查了矩形的性質(zhì)和翻折變換(折疊問題)的相關(guān)知識點,需要掌握矩形的四個角都是直角,矩形的對角線相等;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應邊和角相等才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B兩地有公路和鐵路相連,在這條路上有一家食品廠,它到B地的距離是到A地的2倍,這家工廠從A地購買原料,制成食品賣到B地.已知公路運價為1.5元/(公里噸),鐵路運價為1元/(公里噸),這兩次運輸(第一次:A地→食品廠,第二次:食品廠→B地)共支出公路運費15600元,鐵路運費20600元.
問:
(1)這家食品廠到A地的距離是多少?
(2)這家食品廠此次共買進原料和賣出食品各多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中是真命題的有( )
①直徑是圓中最大的弦;②長度相等的弧是等;③平分弦的直徑垂直于弦,并且平分弦所對的兩條弧;④兩個圓心角相等,它們所對的弦也相等;⑤等弧所對的圓心角相等.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個四邊形三個內(nèi)角度數(shù)之比為2∶1∶3,第四個內(nèi)角為60°,那么這三個內(nèi)角的度數(shù)分別為______________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線交x軸于點A,交y軸于點C(0,4),拋物線經(jīng)過點A,交y軸于點B(0,﹣2).點P為拋物線上一個動點,過點P作x軸的垂線PD,過點B作BD⊥PD于點D,連接PB,設(shè)點P的橫坐標為m.
(1)求拋物線的解析式;
(2)當△BDP為等腰直角三角形時,求線段PD的長;
(3)如圖2,將△BDP繞點B逆時針旋轉(zhuǎn),得到△BD′P′,且旋轉(zhuǎn)角∠PBP′=∠OAC,當點P的對應點P′落在坐標軸上時,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】調(diào)查市場上某種食品的色素含量是否符合國家標準,這種調(diào)查適用 .(填全面調(diào)查或者抽樣調(diào)查)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線(m為常數(shù),﹣1≤m≤4).A(﹣m﹣1,),B(,),C(﹣m,)是該拋物線上不同的三點,現(xiàn)將拋物線的對稱軸繞坐標原點O逆時針旋轉(zhuǎn)90°得到直線a,過拋物線頂點P作PH⊥a于H.
(1)用含m的代數(shù)式表示拋物線的頂點坐標;
(2)若無論m取何值,拋物線與直線y=x﹣km(k為常數(shù))有且僅有一個公共點,求k的值;
(3)當1<PH≤6時,試比較,,之間的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com