(2009•達州)如圖是一株美麗的勾股樹,其中所有的四邊形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的邊長分別是3,5,2,3,則最大正方形E的面積是( )

A.13
B.26
C.47
D.94
【答案】分析:根據(jù)正方形的面積公式,結(jié)合勾股定理,能夠?qū)С稣叫蜛,B,C,D的面積和即為最大正方形的面積.
解答:解:根據(jù)勾股定理的幾何意義,可得A、B的面積和為S1,C、D的面積和為S2,S1+S2=S3,于是S3=S1+S2,
即S3=9+25+4+9=47.
故選C.
點評:能夠發(fā)現(xiàn)正方形A,B,C,D的邊長正好是兩個直角三角形的四條直角邊,根據(jù)勾股定理最終能夠證明正方形A,B,C,D的面積和即是最大正方形的面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年北京市宣武區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2009•達州)如圖,直線y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點A、點B,與x軸交于點C,其中點A的坐標(biāo)為(-2,4),點B的橫坐標(biāo)為-4.
(1)試確定反比例函數(shù)的關(guān)系式;
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2009•達州)如圖,拋物線y=a(x+3)(x-1)與x軸相交于A、B兩點(點A在點B右側(cè)),過點A的直線交拋物線于另一點C,點C的坐標(biāo)為(-2,6).
(1)求a的值及直線AC的函數(shù)關(guān)系式;
(2)P是線段AC上一動點,過點P作y軸的平行線,交拋物線于點M,交x軸于點N.
①求線段PM長度的最大值;
②在拋物線上是否存在這樣的點M,使得△CMP與△APN相似?如果存在,請直接寫出所有滿足條件的點M的坐標(biāo)(不必寫解答過程);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2009•達州)如圖,直線y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點A、點B,與x軸交于點C,其中點A的坐標(biāo)為(-2,4),點B的橫坐標(biāo)為-4.
(1)試確定反比例函數(shù)的關(guān)系式;
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市采荷中學(xué)中考數(shù)學(xué)模擬試卷(5月份)(解析版) 題型:解答題

(2009•達州)如圖,直線y=kx+b與反比例函數(shù)y=(x<0)的圖象相交于點A、點B,與x軸交于點C,其中點A的坐標(biāo)為(-2,4),點B的橫坐標(biāo)為-4.
(1)試確定反比例函數(shù)的關(guān)系式;
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年四川省達州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•達州)如圖,拋物線y=a(x+3)(x-1)與x軸相交于A、B兩點(點A在點B右側(cè)),過點A的直線交拋物線于另一點C,點C的坐標(biāo)為(-2,6).
(1)求a的值及直線AC的函數(shù)關(guān)系式;
(2)P是線段AC上一動點,過點P作y軸的平行線,交拋物線于點M,交x軸于點N.
①求線段PM長度的最大值;
②在拋物線上是否存在這樣的點M,使得△CMP與△APN相似?如果存在,請直接寫出所有滿足條件的點M的坐標(biāo)(不必寫解答過程);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案