如圖所示,四邊形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.則BD的長為( )

A.
B.
C.
D.
【答案】分析:以A為圓心,AB長為半徑作圓,延長BA交⊙A于F,連接DF.在△BDF中,由勾股定理即可求出BD的長.
解答:解:以A為圓心,AB長為半徑作圓,延長BA交⊙A于F,連接DF.
∵DC∥AB,
=
∴DF=CB=1,BF=2+2=4,
∵FB是⊙A的直徑,
∴∠FDB=90°,
∴BD==
故選B.
點評:本題考查了勾股定理,解題的關鍵是作出以A為圓心,AB長為半徑的圓,構建直角三角形,從而求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、如圖所示,四邊形ABCD是平行四邊形,E,F(xiàn)分別在AD,CB的延長線上,且DE=BF,連接FE分別交AB,CD于點H,G.
(1)觀察圖中有
2
對全等三角形;
(2)聰明的你如果還有時間,請在上圖中連接AF,CE,你將發(fā)現(xiàn)圖中出現(xiàn)了更多的全等三角形.請在下面的橫線上再寫出兩對與(1)不同的全等三角形(不用證明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖所示,四邊形ABCD為⊙O的內(nèi)接四邊形,E為AB延長線的上一點,∠CBE=40°,則∠AOC等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,四邊形ABCD中,E、F分別為AD、BC的中點.
(1)當AB∥CD而AD與BC不平行時,四邊形ABCD稱為
 
形,線段EF叫做其
 
,EF與AB+CD的數(shù)量關系為
 
;
(2)當AB與CD不平行,AD與BC也不平行時,猜想EF與AB+CD的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,四邊形ABCD是正方形,E、F是AB、BC的中點,連接EC交DB、DF于G、H,則EG:GH:HC=
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:新課標 讀想練同步測試 七年級數(shù)學(下) 北師大版 題型:044

如圖所示,四邊形AB-CD中,AB∥CD,P為BC上一點,設∠CDP=α,∠CPD=β,試說明,無論點P在BC上如何移動,總有α+β=∠B.

查看答案和解析>>

同步練習冊答案