如圖,菱形ABCD的邊長為12cm,∠A=60°,點(diǎn)P從點(diǎn)A出發(fā)沿線路AB?BD做勻速運(yùn)動,點(diǎn)Q從點(diǎn)D同時(shí)出發(fā)沿線路DC?CB?BA做勻速運(yùn)動.
(1)已知點(diǎn)P,Q運(yùn)動的速度分別為2cm/秒和2.5cm/秒,經(jīng)過12秒后,P、Q分別到達(dá)M、N兩點(diǎn),試判斷△AMN的形狀,并說明理由;
(2)如果(1)中的點(diǎn)P、Q有分別從M、N同時(shí)沿原路返回,點(diǎn)P的速度不變,點(diǎn)Q的速度改為vcm/秒,經(jīng)過3秒后,P、Q分別到達(dá)E、F兩點(diǎn),若△BEF與題(1)中的△AMN相似,試求v的值.

【答案】分析:(1)易得△ABD是等邊三角形,經(jīng)過12秒后,P、Q分別到達(dá)M、N兩點(diǎn),則AP,BF都可以求出,就可以判斷N,F(xiàn)的位置,根據(jù)直角三角形的性質(zhì),判斷△AMN的形狀;
(2)根據(jù)△BEF與△AMN相似得到△BEF為直角三角形,就可以求出SQ的長,已知時(shí)間,就可以求出速度.
解答:解:(1)∵∠A=60°,AD=AB=12,
∴△ABD為等邊三角形,故BD=12,
又∵VP=2cm/s
∴SP=VPt=2×12=24(cm),
∴P點(diǎn)到達(dá)D點(diǎn),即M與D重合vQ=2.5cm/s SQ=VQt=2.5×12=30(cm),
∴N點(diǎn)在AB之中點(diǎn),即AN=BN=6(cm),
∴∠AND=90°即△AMN為直角三角形;

(2)VP=2m/s t=3s
∴SP=6cm,
∴E為BD的中點(diǎn),
又∵△BEF與△AMN相似,
∴△BEF為直角三角形,且∠EBF=60°,∠BPF=30°,
①Q(mào)到達(dá)F1處:SQ=BP-BF1==3(cm),故VQ===1(cm/秒);
②Q到達(dá)F2處:SQ=BP=9,故VQ==(cm/秒);
③Q到達(dá)F3處:SQ=6+2BP=18,故VQ===6(cm/秒).
點(diǎn)評:本題是圖形與函數(shù)相結(jié)合的問題,正確根據(jù)條件得出方程是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD的邊長為2,∠ABC=45°,則點(diǎn)D的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD的對角線AC=6,BD=8,∠ABD=α,則下列結(jié)論正確的是( 。
A、sinα=
4
5
B、cosα=
3
5
C、tanα=
4
3
D、tanα=
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD的邊長為6且∠DAB=60°,以點(diǎn)A為原點(diǎn)、邊AB所在的直線為x軸且頂點(diǎn)D在第一象限建立平面直角坐標(biāo)系.動點(diǎn)P從點(diǎn)D出發(fā)沿折線DCB向終點(diǎn)B以2單位/每秒的速度運(yùn)動,同時(shí)動點(diǎn)Q從點(diǎn)A出發(fā)沿x軸負(fù)半軸以1單位/秒的速度運(yùn)動,當(dāng)點(diǎn)P到達(dá)終點(diǎn)時(shí)停止運(yùn)動,運(yùn)動時(shí)間為t,直線PQ交邊AD于點(diǎn)E.
(1)求出經(jīng)過A、D、C三點(diǎn)的拋物線解析式;
(2)是否存在時(shí)刻t使得PQ⊥DB,若存在請求出t值,若不存在,請說明理由;
(3)設(shè)AE長為y,試求y與t之間的函數(shù)關(guān)系式;
(4)若F、G為DC邊上兩點(diǎn),且點(diǎn)DF=FG=1,試在對角線DB上找一點(diǎn)M、拋物線ADC對稱軸上找一點(diǎn)N,使得四邊形FMNG周長最小并求出周長最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,菱形ABCD的邊長為8cm,∠B=60°,P、Q同時(shí)從A點(diǎn)出發(fā),點(diǎn)P以1cm/秒的速度沿A→C→B的方向運(yùn)動,點(diǎn)Q以2cm/秒的速度沿A→B→C→D的方向運(yùn)動.當(dāng)點(diǎn)Q運(yùn)動到D點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動.設(shè)P、Q運(yùn)動的時(shí)間為x秒,△APQ與△ABC重疊部分的面積為ycm2(規(guī)定:點(diǎn)和線段是面積為0的三角形).
(1)當(dāng)x=
8
8
秒時(shí),P和Q相遇;
(2)當(dāng)x=
(12-4
3
(12-4
3
秒時(shí),△APQ是等腰直角三角形;
(3)當(dāng)x=
32
3
32
3
秒時(shí),△APQ是等邊三角形;
(4)求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,菱形ABCD的周長為8cm,∠ABC:∠BAD=2:1,對角線AC、BD相交于點(diǎn)O,求BD及AC的長.

查看答案和解析>>

同步練習(xí)冊答案