精英家教網(wǎng)如圖,AB為半圓的直徑,C為半圓上一點,CD⊥AB于D.若CD=6,AD:DB=3:2,則AC•BC等于(  )
A、15
6
B、30
6
C、60
6
D、90
分析:由AB為半圓的直徑,得∠ACB=90°,可證△ADC∽△CDB,因此CD2=AD•BD,而CD=6,AD:DB=3:2,可設AD=3x,BD=2x,這樣可求出x=
6
,AD=3
6
,BD=2
6
,再利用勾股定理求出AC和BC,最后計算它們的積.
解答:解:∵AB為半圓的直徑,
∴∠ACB=90°,
又∵CD⊥AB,
∴△ADC∽△CDB,
∴CD2=AD•BD,而CD=6,AD:DB=3:2,可設AD=3x,BD=2x,
所以36=2x•3x,則x=
6
,
∴AD=3
6
,BD=2
6
,
再利用勾股定理,得AC=3
10
,BC=2
15
,
所以AC•BC=3
10
×2
15
=30
6

故選B.
點評:本題考查了圓周角定理.同弧所對的圓周角相等,并且等于它所對的圓心角的一半.也考查了直徑所對的圓周角為90°和二次根式的計算以及三角形相似的判斷.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖是某學校田徑體育場一部分的示意圖,第一條跑道每圈為400米,跑道分直道和彎道,直道為長相等的平行線段,彎道為同心的半圓型,彎道與直道相連接,已知直精英家教網(wǎng)道BC的長86.96米,跑道的寬為l米.(π=3.14,結果精確到0.01)
(1)求第一條跑道的彎道部分
AB
的半徑.
(2)求一圈中第二條跑道比第一條跑道長多少米?
(3)若進行200米比賽,求第六道的起點F與圓心O的連線FO與OA的夾角∠FOA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•咸豐縣二模)如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經(jīng)作半圓,面積分別記為S1、S2,則S1+S2的值等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(12分)如圖所示,一內(nèi)壁光滑的細管彎成半徑為R=0.4 m的半圓形軌道CD,豎直放置,其內(nèi)徑略大于小球的直徑,水平軌道與豎直半圓軌道在C點連接完好.置于水平軌道上的彈簧左端與豎直墻壁相連,B處為彈簧的自然狀態(tài).將一個質量為m=0.8 kg的小球放在彈簧的右側后,用力向左側推小球而壓縮彈簧至A處,然后將小球由靜止釋放,小球運動到C處后對軌道的壓力為F1=58 N.水平軌道以B處為界,左側AB段長為x=0.3 m,與小球的動摩擦因數(shù)為μ=0.5,右側BC段光滑.g=10 m/s2,求:

(1)彈簧在壓縮時所儲存的彈性勢能.
(2)小球運動到軌道最高處D點時對軌道的壓力.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經(jīng)作半圓,面積分別記為S1、S2,則S1+S2的值等于


  1. A.
    8πB
  2. B.
    16π
  3. C.
    25π
  4. D.
    12.5π

查看答案和解析>>

科目:初中數(shù)學 來源:2012年湖北省恩施州咸豐縣中考數(shù)學二模試卷(解析版) 題型:選擇題

如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經(jīng)作半圓,面積分別記為S1、S2,則S1+S2的值等于( )

A.8πB
B.16π
C.25π
D.12.5π

查看答案和解析>>

同步練習冊答案