如圖,矩形ABCD中,以對角線BD為一邊構造一個矩形BDEF,使得另一邊EF過原矩形的頂點C.
(1)設Rt△CBD的面積為S1,Rt△BFC的面積為S2,Rt△DCE的面積為S3,則S1 S2+S3(用“>”、“=”、“<”填空);
(2)寫出如圖中的三對相似三角形,并選擇其中一對進行證明.
(1)= (2)△BCD∽△CFB∽△DEC,證明見解析
解析思路分析:(1)根據(jù)S1=S矩形BDEF,S2+S3=S矩形BDEF,即可得出答案.
(2)根據(jù)矩形的性質,結合圖形可得:△BCD∽△CFB∽△DEC,選擇一對進行證明即可.
解答:(1)解:∵S1=BD×ED,S矩形BDEF=BD×ED,
∴S1=S矩形BDEF,
∴S2+S3=S矩形BDEF,
∴S1=S2+S3.
(2)答:△BCD∽△CFB∽△DEC.
證明△BCD∽△DEC;
證明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,
∴∠EDC=∠CBD,
又∵∠BCD=∠DEC=90°,
∴△BCD∽△DEC.
點評:本題考查了相似三角形的判定,注意掌握相似三角形的判定定理,最經常用的就是兩角法,此題難度一般.
科目:初中數(shù)學 來源: 題型:填空題
巡警小張在犯罪現(xiàn)場發(fā)現(xiàn)一只腳印,他把隨身攜帶的一百元鈔票放在腳印旁進行拍照,照片送到刑事科,他們測得照片中的腳印和鈔票的長度分別為5cm和3.1cm,一張百元鈔票的實際長度大約為15.5cm,請問腳印的實際長度為_______cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
問題情境:如圖1,直角三角板ABC中,∠C=90°,AC=BC,將一個用足夠長的的細鐵絲制作的直角的頂點D放在直角三角板ABC的斜邊AB上,再將該直角繞點D旋轉,并使其兩邊分別與三角板的AC邊、BC邊交于P、Q兩點。
問題探究:(1)在旋轉過程中,
①如圖2,當AD=BD時,線段DP、DQ有何數(shù)量關系?并說明理由。
②如圖3,當AD=2BD時,線段DP、DQ有何數(shù)量關系?并說明理由。
③根據(jù)你對①、②的探究結果,試寫出當AD=nBD時,DP、DQ滿足的數(shù)量關系為_______________(直接寫出結論,不必證明)
(2)當AD=BD時,若AB=20,連接PQ,設△DPQ的面積為S,在旋轉過程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,請說明理由。
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,動點P從點B出發(fā),在BA邊上以每秒5 cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒4 cm的速度向點B勻速運動,運動時間為t秒(0<t<2),連接PQ.
(1)若△BPQ與△ABC相似,求t的值;
(2)連接AQ、CP,若AQ⊥CP,求t的值;
(3)試證明:PQ的中點在△ABC的一條中位線上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在等腰Rt△ABC中,∠C=90°,正方形DEFG的頂點D在邊AC上,點E,F(xiàn)在邊AB上,點G在邊BC上.
⑴求證:△ADE≌△BGF;
⑵若正方形DEFG的面積為16,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知,如圖,在平行四邊形ABCD中,E、F分別是邊BC、CD上的點,且EF∥BD,AE、AF分別交BD于點G和點H,BD=12,EF=8。求:(1)的值。(2)線段GH的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知在矩形ABCD中,AB=2,BC=3,P是線段AD邊上的任意一點(不含端點A、D),連結PC,過點P作PE⊥PC交AB于E.
(1)證明△PAE∽△CDP;
(2)當點P在AD上運動時,對應的點E也隨之在AB上運動,設AP=x,BE=y(tǒng),求y與x的函數(shù)關系式及y的取值范圍;
(3)在線段AD上是否存在不同于P的點Q,使得QC⊥QE?若存在,求線段AP與AQ之間的數(shù)量關系;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com