(2010•義烏)如圖,以線(xiàn)段AB為直徑的⊙O交線(xiàn)段AC于點(diǎn)E,點(diǎn)M是的中點(diǎn),OM交AC于點(diǎn)D,∠BOE=60°,cosC=,BC=2
(1)求∠A的度數(shù);
(2)求證:BC是⊙O的切線(xiàn);
(3)求MD的長(zhǎng)度.
【答案】分析:(1)根據(jù)三角函數(shù)的知識(shí)即可得出∠A的度數(shù).
(2)要證BC是⊙O的切線(xiàn),只要證明AB⊥BC即可.
(3)根據(jù)切線(xiàn)的性質(zhì),運(yùn)用三角函數(shù)的知識(shí)求出MD的長(zhǎng)度.
解答:(1)解:∵∠BOE=60°,
∴∠A=∠BOE=30°.(2分)

(2)證明:在△ABC中,∵cosC=,
∴∠C=60°.(1分)
又∵∠A=30°,
∴∠ABC=90°,
∴AB⊥BC.(2分)
∴BC是⊙O的切線(xiàn).(3分)

(3)解:∵點(diǎn)M是的中點(diǎn),
∴OM⊥AE.(1分)
在Rt△ABC中,∵BC=2,
∴AB=BC•tan60°=2×=6.(2分)
∴OA==3,
∴OD=OA=,
∴MD=.(3分)
點(diǎn)評(píng):本題綜合考查了三角函數(shù)的知識(shí)、切線(xiàn)的判定.要證某線(xiàn)是圓的切線(xiàn),已知此線(xiàn)過(guò)圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(33)(解析版) 題型:解答題

(2010•義烏)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、D,且S△PBD=4,=
(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫(xiě)出當(dāng)x>0時(shí),一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2010•義烏)如圖1,已知梯形OABC,拋物線(xiàn)分別過(guò)點(diǎn)O(0,0)、A(2,0)、B(6,3).
(1)直接寫(xiě)出拋物線(xiàn)的對(duì)稱(chēng)軸、解析式及頂點(diǎn)M的坐標(biāo);
(2)將圖1中梯形OABC的上下底邊所在的直線(xiàn)OA、CB以相同的速度同時(shí)向上平移,分別交拋物線(xiàn)于點(diǎn)O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標(biāo)分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當(dāng)S=36時(shí)點(diǎn)A1的坐標(biāo);
(3)在圖1中,設(shè)點(diǎn)D坐標(biāo)為(1,3),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著線(xiàn)段BC運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以與點(diǎn)P相同的速度沿著線(xiàn)段DM運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)M時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P、Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t,是否存在某一時(shí)刻t,使得直線(xiàn)PQ、直線(xiàn)AB、x軸圍成的三角形與直線(xiàn)PQ、直線(xiàn)AB、拋物線(xiàn)的對(duì)稱(chēng)軸圍成的三角形相似?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2010•義烏)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、D,且S△PBD=4,=
(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫(xiě)出當(dāng)x>0時(shí),一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省義烏市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•義烏)如圖1,已知梯形OABC,拋物線(xiàn)分別過(guò)點(diǎn)O(0,0)、A(2,0)、B(6,3).
(1)直接寫(xiě)出拋物線(xiàn)的對(duì)稱(chēng)軸、解析式及頂點(diǎn)M的坐標(biāo);
(2)將圖1中梯形OABC的上下底邊所在的直線(xiàn)OA、CB以相同的速度同時(shí)向上平移,分別交拋物線(xiàn)于點(diǎn)O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設(shè)梯形O1A1B1C1的面積為S,A1、B1的坐標(biāo)分別為(x1,y1)、(x2,y2).用含S的代數(shù)式表示x2-x1,并求出當(dāng)S=36時(shí)點(diǎn)A1的坐標(biāo);
(3)在圖1中,設(shè)點(diǎn)D坐標(biāo)為(1,3),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著線(xiàn)段BC運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以與點(diǎn)P相同的速度沿著線(xiàn)段DM運(yùn)動(dòng).P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)M時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P、Q兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t,是否存在某一時(shí)刻t,使得直線(xiàn)PQ、直線(xiàn)AB、x軸圍成的三角形與直線(xiàn)PQ、直線(xiàn)AB、拋物線(xiàn)的對(duì)稱(chēng)軸圍成的三角形相似?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省義烏市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•義烏)如圖,一次函數(shù)y=kx+2的圖象與反比例函數(shù)y=的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交x軸、y軸于點(diǎn)C、D,且S△PBD=4,=
(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫(xiě)出當(dāng)x>0時(shí),一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案