如圖,已知直線y =-x+4與反比例函數(shù)y=的圖象相交于點(diǎn)A(-2,a),并且與x軸相交于點(diǎn)B。
(1)求a的值;
(2)求反比例函數(shù)的表達(dá)式;
(3)求△AOB的面積。
解:(1 )將A(-2,a)代入y=-x+4中,
得:a=-(-2)+4  所以 a =6;
(2)由(1)得:A(-2,6)將A(-2,6)代入y=中,
得到6=,即k=-12
所以反比例函數(shù)的表達(dá)式為:y=-;
(3)如圖:過(guò)A點(diǎn)作AD⊥x軸于D;
因?yàn)?A(-2,6)  
所以   AD=6在直線y=-x+4中,
令y=0,得x=4  
所以 B(4,0) 即OB=4    
所以△AOB的面積S=OB·AD=×4×6=12。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,已知直線AB和CD相交于點(diǎn)O,∠COE是直角,OF平分∠AOE.
(1)寫出∠AOC與∠BOD的大小關(guān)系:
相等
,判斷的依據(jù)是
等角的補(bǔ)角相等
;
(2)若∠COF=35°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,已知直線l1∥l2,AB⊥CD,∠1=30°,則∠2的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知直線l1y=
2
3
x+
8
3
與直線 l2:y=-2x+16相交于點(diǎn)C,直線l1、l2分別交x軸于A、B兩點(diǎn),矩形DEFG的頂點(diǎn)D、E分別在l1、l2上,頂點(diǎn)F、G都在x軸上,且點(diǎn)G與B點(diǎn)重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•懷化)如圖,已知直線a∥b,∠1=35°,則∠2=
35°
35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線m∥n,則下列結(jié)論成立的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案