【題目】如圖所示,在函數(shù)x0)的圖象上,OP1A1P2A1A2,P3A2A3……,PnAn1An……都是等腰直角三角形,斜邊OA1,A1A2,……,An-1An,都在x軸上,則y1 + y2 + + yn =___________

【答案】3

【解析】試題解析:如圖,過點(diǎn)P1P1M⊥x軸,

∵△OP1A1是等腰直角三角形,

∴P1M=OM=MA1

設(shè)P1的坐標(biāo)是(a,a),

把(a,a)代入解析式y=x0)中,得a=3,

∴A1的坐標(biāo)是(6,0),

∵△P2A1A2是等腰直角三角形,

設(shè)P2的縱坐標(biāo)是b,則P2的橫坐標(biāo)是6+b

把(6+b,b)代入函數(shù)解析式得b=

解得b=3-3,

∴A2的橫坐標(biāo)是6+2b=6+6-6=6

同理可以得到A3的橫坐標(biāo)是6,

An的橫坐標(biāo)是6

根據(jù)等腰三角形的性質(zhì)得到y1+y2+…yn等于An點(diǎn)橫坐標(biāo)的一半,

∴y1+y2+…yn=3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(-3,﹣2)兩點(diǎn).

(1)求m的值;

(2)根據(jù)所給條件,請直接寫出不等式k1x+b>的解集;

(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點(diǎn), 且y1>y2,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理有著悠久的歷史,它曾引起很多人的興趣,1955年希臘發(fā)型了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構(gòu)成,它可以驗(yàn)證勾股定理.在如圖的勾股圖中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQO使得∠O=90°,點(diǎn)Q在在直角坐標(biāo)系y軸正半軸上,點(diǎn)P在x軸正半軸上,點(diǎn)O與原點(diǎn)重合,∠OQP=60°,點(diǎn)H在邊QO上,點(diǎn)D、E在邊PO上,點(diǎn)G、F在邊PQ上,那么點(diǎn)P坐標(biāo)為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式計算正確的是( 。

A. x6÷x3x2B. x4x3x12C. x23x5D. a+2a3a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年里約奧運(yùn)會,中國女排的姑娘們在郎平教練指導(dǎo)下,通過刻苦訓(xùn)練,取得了世界冠軍,為國爭光,如圖,已知排球場的長度OD為18米,位于球場中線處球網(wǎng)的高度AB為2.43米,一隊(duì)員站在點(diǎn)O處發(fā)球,排球從點(diǎn)O的正上方1.8米的C點(diǎn)向正前方飛出,當(dāng)排球運(yùn)行至離點(diǎn)O的水平距離OE為7米時,到達(dá)最高點(diǎn)G建立如圖所示的平面直角坐標(biāo)系.

(1)當(dāng)球上升的最大高度為3.2米時,求排球飛行的高度y(單位:米)與水平距離x(單位:米)的函數(shù)關(guān)系式.(不要求寫自變量x的取值范圍).

(2)在(1)的條件下,對方距球網(wǎng)0.5米的點(diǎn)F處有一隊(duì)員,他起跳后的最大高度為3.1米,問這次她是否可以攔網(wǎng)成功?請通過計算說明.

(3)若隊(duì)員發(fā)球既要過球網(wǎng),又不出邊界,問排球飛行的最大高度h的取值范圍是多少?(排球壓線屬于沒出界)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(3x2y2=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2kx+k2﹣k=0(k>0).問x=0可能是方程一個根嗎?若是,求出k值及方程的另一個根,若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次考試中,某班級的數(shù)學(xué)成績統(tǒng)計圖如下.下列說法錯誤的是(

A.得分在70~80分之間的人數(shù)最多
B.該班的總?cè)藬?shù)為40
C.得分在90~100分之間的人數(shù)最少
D.及格(≥60分)人數(shù)是26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做等鄰邊四邊形.如圖, , , ,將沿的平分線方向平移得到,連結(jié)

若平移后的四邊形等鄰邊四邊形,求平移的距離(即線段的長).

查看答案和解析>>

同步練習(xí)冊答案