一副三角板如圖擺放,點F是45°角三角板ABC的斜邊的中點,AC=4.當30°角三角板DEF的直角頂點繞著點F旋轉時,直角邊DF,EF分別與AC,BC相交于點M,N.在旋轉過程中有以下結論:①MF=NF:②四邊形CMFN有可能為正方形;③MN長度的最小值為2;④四邊形CMFN的面積保持不變;⑤△CMN面積的最大值為2.其中正確的個數(shù)是( )

A.2
B.3
C.4
D.5
【答案】分析:利用兩直角三角形的特殊角、性質及旋轉的性質分別判斷每一個結論,找到正確的即可.
解答:解:①∵F為AB中點
∴AF=BF(1分)
∵∠AFM=45°,∠DFE=90°
∴∠BFN=180-∠AFM-∠DFE
=180-45°-90°=45°
∴∠AFM=∠BFN(2分)
在△AFM和△FBN中

∴△AFM≌△BFN(ASA)
∴MF=NF(3分)
故①正確;
②當MF⊥AC時,四邊形MFNC是矩形,此時MA=MF=MC,根據(jù)鄰邊相等的矩形是正方形可知②正確;
③連接MN,當M為AC的中點時,CM=CN,根據(jù)邊長為4知CM=CN=2,此時MN最小,最小值為2,故③錯誤;
④當M、N分別為AC、BC中點時,四邊形CDFE是正方形.
∵△ADF≌△CEF,
∴S△CEF=S△AMF
∴S四邊形CDFE=S△AFC
故④正確;
⑤由于△MNF是等腰直角三角形,因此當DM最小時,DN也最;
即當DF⊥AC時,DM最小,此時DN=BC=2.
∴DN=DN=2 ;
當△CEF面積最大時,此時△DEF的面積最。
此時S△CEF=S四邊形CEFD-S△DEF=S△AFC-S△DEF=4-2=2,
故⑤正確.
故選C.
點評:此題考查的知識點有等腰直角三角形,全等三角形的判定與性質等知識點,綜合性強,難度較大,是一道難題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

將一副三角板如圖擺放,若∠BAE=135°,則∠CAD的度數(shù)是
45°
45°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•黃巖區(qū)模擬)一副三角板如圖擺放,點F是45°角三角板ABC的斜邊的中點,AC=4.當30°角三角板DEF的直角頂點繞著點F旋轉時,直角邊DF,EF分別與AC,BC相交于點M,N.在旋轉過程中有以下結論:①MF=NF:②四邊形CMFN有可能為正方形;③MN長度的最小值為2;④四邊形CMFN的面積保持不變;⑤△CMN面積的最大值為2.其中正確的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將一副三角板如圖擺放,已知∠BAE=136°,求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將一副三角板如圖1擺放,∠DCE=30゜,現(xiàn)將∠DCE繞C點以15゜/s的速度逆時針旋轉,旋轉時間為t(s).
(1)t為多少時,CD恰好平分∠BCE?請在圖2中自己畫圖,并說明理由.
(2)當6<t<8時,CM平分∠ACE,CN平分∠BCD,求∠MCN,在圖3中完成.
(3)當8<t<12時,(2)中結論是否發(fā)生變化?請在圖4中完成.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將一副三角板如圖擺放,若∠BAE=140°,則∠CAD的度數(shù)是
40°
40°

查看答案和解析>>

同步練習冊答案