【題目】已知:如圖,銳角△ABC的兩條
高BE、CD相交于點(diǎn)O,且OB=OC,
(1)求證:△ABC是等腰三角形;
(2)判斷點(diǎn)O是否在∠BAC的角平分線上,并說(shuō)明理由。
【答案】(1)、證明過(guò)程見(jiàn)解析;(2)、點(diǎn)O是在∠BAC的角平分線上,理由見(jiàn)解析
【解析】
試題分析:(1)、根據(jù)等腰三角形的性質(zhì)以及高線得出△BDC和△CEB全等,從而得出∠DBC=∠ECB,得到等腰三角形;(2)、連接AO,根據(jù)△BDC和△CEB全等得到DC=EB,然后根據(jù)OB=OC得出OD=OE,結(jié)合∠BDC=∠CEB=90°和AO為公共邊得出△ADO和△AEO全等從而得到答案.
試題解析:(1)、∵OB=OC ∴∠OBC=∠OCB ∵BE、CD是兩條高 ∴∠BDC=∠CEB=90°
又∵BC=CB ∴△BDC≌△CEB(AAS) ∴∠DBC=∠ECB ∴AB=AC ∴△ABC是等腰三角形。
(2)、點(diǎn)O是在∠BAC的角平分線上。連結(jié)AO. ∵ △BDC≌△CEB ∴DC=EB,
∵OB=OC ∴ OD=OE 又∵∠BDC=∠CEB=90° AO=AO ∴△ADO≌△AEO(HL)
∴∠DAO=∠EAO ∴點(diǎn)O是在∠BAC的角平分線上。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,頂點(diǎn)為M的拋物線y=ax2+bx(a>0)經(jīng)過(guò)點(diǎn)A和x軸正半軸上的點(diǎn)B,AO=BO=2,∠AOB=120°.
(1)求這條拋物線的表達(dá)式;
(2)連結(jié)OM,求∠AOM的大;
(3)如果點(diǎn)C在x軸上,且△ABC與△AOM相似,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=6,BC=8,CA=10,則該三角形為( )
A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=2(x﹣3)2+1,下列說(shuō)法:
①其圖象的開口向下;
②其圖象的對(duì)稱軸為直線x=﹣3;
③其圖象頂點(diǎn)坐標(biāo)為(3,﹣1);
④當(dāng)x<3時(shí),y的值隨x值的增大而減。
則其中說(shuō)法正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市體育中考項(xiàng)目分為必測(cè)項(xiàng)目和選測(cè)項(xiàng)目,必測(cè)項(xiàng)目為:跳繩、立定跳遠(yuǎn);選測(cè)項(xiàng)目為50米、實(shí)心球、踢毽子三項(xiàng)中任選一項(xiàng).
(1)每位考生將有 種選擇方案;
(2)用畫樹狀圖或列表的方法求小穎和小華將選擇同種方案的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在利用太陽(yáng)能熱水器來(lái)加熱水的過(guò)程中,熱水器里的水溫隨所曬時(shí)間的長(zhǎng)短而變化,這個(gè)問(wèn)題中因變量是( 。
A.太陽(yáng)光強(qiáng)弱
B.水的溫度
C.所曬時(shí)間
D.熱水器
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一組數(shù)據(jù)2,3,x,5,7的眾數(shù)為7,則這組數(shù)據(jù)的中位數(shù)為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com