如圖,已知在矩形ABCD中,E是AD上的一點(diǎn),連接EC,BC=CE,BF⊥EC于點(diǎn)F.
求證:△ABE≌△FBE.

【答案】分析:根據(jù)矩形性質(zhì)得出AD∥BC,∠A=90°,根據(jù)平行線性質(zhì)和等腰三角形性質(zhì)得出∠AEB=∠EBC=∠CEB,根據(jù)AAS證明兩三角形全等即可.
解答:證明:在矩形ABCD中,AD∥BC,∠A=90°,
∵AD∥BC,
∴∠AEB=∠EBC,
∵BC=CE,
∴∠EBC=∠BEC,
∴∠AEB=∠BEC,
∵BF⊥CE,
∴∠A=∠BFE=90°,
在△ABE和△FBE中
,
∴△ABE≌△FBE(AAS).
點(diǎn)評(píng):本題考查了矩形性質(zhì)、等腰三角形性質(zhì)、平行線的性質(zhì)、全等三角形的判定等知識(shí)點(diǎn),主要考查學(xué)生的推理能力,題目比較典型,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)自選題:
如圖,已知在矩形ABCD中,AB=2,BC=3,P是線段AD邊上的任意一點(diǎn)(不含端點(diǎn)A、D),連接PC,過點(diǎn)P作PE⊥PC交AB于E.
(1)在線段AD上是否存在不同于P的點(diǎn)Q,使得QC⊥QE?若存在,求線段AP與AQ之間的數(shù)量關(guān)系;若不存在,請(qǐng)說明理由;
(2)當(dāng)點(diǎn)P在AD上運(yùn)動(dòng)時(shí),對(duì)應(yīng)的點(diǎn)E也隨之在AB上運(yùn)動(dòng),求BE的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在矩形ABCD中,AB=3,點(diǎn)E在BC上且∠BAE=30°,延長BC到點(diǎn)F使CF=BE,連接DF.
(1)判斷四邊形AEFD的形狀,并說明理由;
(2)求DF的長度;
(3)若四邊形AEFD是菱形,求菱形AEFD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在矩形ABCD中,AB=2,BC=4,四邊形AFCE為菱形,求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在矩形ABCD中,AB=6,BC=8,⊙E和⊙F分別是△ABC和△ADC的內(nèi)切圓,與對(duì)角線AC分別切于E、F,則EF=
2
5
2
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在矩形ABCD中,E是AD上的一點(diǎn),F(xiàn)是AB上的一點(diǎn),EF⊥EC,且EF=EC,D精英家教網(wǎng)E=3cm,BC=7cm.
(1)求證:△AEF≌△DCE;
(2)請(qǐng)你求出EF的長.

查看答案和解析>>

同步練習(xí)冊答案