【題目】小明參加一個知識競賽,該競賽試題由10道選擇題構(gòu)成,每小題有四個選項,且只有一個選項正確.其給分標準為:答對一題得2分,答錯一題扣1分,不答得0分,若10道題全部答對則額外獎勵5分.小明對其中的8道題有絕對把握答對,剩下2道題完全不知道該選哪個選項.

1)對于剩下的2道題,若小明都采用隨機選擇一個選項的做法,求兩小題都答錯的概率;

2)從預期得分的角度分析,采用哪種做法解答剩下2道題更合算?

【答案】1;(2)小明采用都不答的解答方式更有利

【解析】

1)由只有一個選項就正確的,所以有三個選項是錯誤的,則用對,錯,錯,錯來列表求概率即可;

(2)分別按①兩題都不答;②一題不答,一題隨機選擇;③兩題都采用隨機選擇三種情況求出概率,最后比較即可.

解:(1)因為每小題有四個選項,且只有一個選項就正確的,所以有三個選項是錯誤的,不妨用對,錯,錯,錯來表示.因此可列表

由表格可知,共有16種等可能的結(jié)果,其中兩題都答錯的有9種結(jié)果,所以

第二題

第一題

(對,對)

(對,錯)

(對,錯)

(對,錯)

(錯,對)

(錯,錯)

(錯,錯)

(錯,錯)

(錯,對)

(錯,錯)

(錯,錯)

(錯,錯)

(錯,對)

(錯,錯)

(錯,錯)

(錯,錯)

2)小明有3種可能的解答方式,分別為①兩題都不答;②一題不答,一題隨機選擇;③兩題都采用隨機選擇.

①當兩題都不答時,預期得分為0+16=16;

②當一題不答,一題隨機選擇時,

,

∴預期得分為:;

③當兩題都采用隨機選擇時,有兩題都對,一對一錯,兩題都錯三種可能,所得的分數(shù)分別為9,1,-2,相應的概率分別為:

得分值

9

1

-2

概率

∴預期得分為:

,

∴小明采用都不答的解答方式更有利.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標為t

1)求拋物線的表達式;

2)設拋物線的對稱軸為l,lx軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.

3)如圖2,連接BC,PBPC,設△PBC的面積為S.求S關于t的函數(shù)表達式;并求S最大時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A1在直線l1yx上,過點A1x軸的平行線交直線l2yx于點B1,

過點B1l2的垂線交l1于點A2,過點A2x軸的平行線交直線l2于點B2,過點B2l2的垂線交l1于點A3,過點A3x軸的平行線交直線l2于點B3……,過點B1B2,B3,……,分別作l1的平行線交A2B2于點C1,交A3B3于點C2,交A4B4于點C3,……,按此規(guī)律繼續(xù)下去,若OA11,則點的坐標為_______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖拋物線a0)與x軸的交點為A、BAB的左邊)且AB=3,與y軸交于C

1)求A、B兩點的坐標.

2)若拋物線過點E(-12),求拋物線的解析式.

3)在x軸的下方的拋物線上是否存在一點P使得△PAC的面積為3,若存在求出P點的坐標,不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線過點A(1,0)B(4,0),與y軸相交于點C

1)求拋物線的解析式;

2)在x軸正半軸上存在點E,使得△BCE是等腰三角形,請求出點E的坐標;

3)如圖2,點D是直線BC上方拋物線上的一個動點.過點DDMBC于點M,是否存在點D,使得△CDM中的某個角恰好等于∠ABC2倍?若存在,請求出點D的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=,將△ABC繞點C逆時針旋轉(zhuǎn)60°,得到△MNC,連接AN,則AN的長是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,,,以點A為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)矩形ABCD,旋轉(zhuǎn)角為,得到矩形AEFG,點B、點C、點D的對應點分別為點E、點F、點G

如圖,當點E落在DC邊上時,直寫出線段EC的長度為______

如圖,當點E落在線段CF上時,AEDC相交于點H,連接AC

求證:;

直接寫出線段DH的長度為______

如圖設點P為邊FG的中點,連接PB,PE,在矩形ABCD旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地為了促進旅游業(yè)的發(fā)展,要在如圖所示的三條公路,圍成的一塊地上修建一個度假村,要使這個度假村到兩條公路的距離相等,且到,兩地的距離相等,下列選址方法繪圖描述正確的是(

A.的平分線,再畫線段的垂直平分線,兩線的交點符合選址條件

B.先畫的平分線,再畫線段的垂直平分線,三線的交點符合選址條件

C.畫三個角三個角的平分線,交點即為所求

D.,三條線段的垂直平分線,交點即為所求

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】墊球是排球隊常規(guī)訓練的重要項目之一.下列圖表中的數(shù)據(jù)是甲,乙,丙三名校排球隊員每人10次墊球測試的成績.測試規(guī)則為每次連續(xù)接球10個,每墊球到位1個記1.

(1)若運動員丙測試成績的平均數(shù)和眾數(shù)都是7,則成績統(tǒng)計表中a= ,b= ;

(2)若在三名隊員中選擇一位墊球成績優(yōu)秀且較為穩(wěn)定的同學作為排球比賽的自由人,你認為選誰更合適?請用你所學過的統(tǒng)計量加以分析說明(參考數(shù)據(jù):三人成績的方差分別為,,)

(3)訓練期間甲、乙、丙三人之間進行隨機傳球游戲,先由甲傳出球,經(jīng)過三次傳球,球回到甲手中的概率是多少?

查看答案和解析>>

同步練習冊答案