【題目】已知拋物線y=x2+bx+cx軸交于點A(-3,0)、B(1,0),C為頂點,直線y=x+m經(jīng)過點A,與y軸交于點D.

(1)b、c的值;

(2)∠DAO的度數(shù)和線段AD的長;

(3)平移該拋物線得到一條新拋物線,設新拋物線的頂點為C′,若新拋物線經(jīng)過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應的函數(shù)表達式.

【答案】(1)b=2,c=-3(2)∠DAO=45°.AD=3(3)y=x2-4x+3y=x2+6x+3

【解析】

(1)利用待定系數(shù)法求函數(shù)解析式即可;
(2)利用待定系數(shù)法求直線函數(shù)解析式,然后求得D點坐標,通過等腰直角三角形求得∠DAO的度數(shù);根據(jù)勾股定理計算即可求得線段AD的長度;
(3)根據(jù)題意可設新拋物線對應的函數(shù)表達式為:y=x2+tx+3,根據(jù)二次函數(shù)的性質求出點C′的坐標,再根據(jù)題意求出直線CC′的解析式,代入計算即可.

(1)把A(-3,0)、B(1,0)代入y=x2+bx+c,

,

解得;

(2)把A(-3,0)代入y=x+m得到:-3+m=0,

解得m=3,

即直線方程為y=x+3,

x=0,則y=3,

D(0,3),

OA=OD=3,

AOD=90°,

∴△AOD是等腰直角三角形,

∴∠DAO=45°,

A(-3,0),D(0,3)得到:AD==3,

綜上所述,∠DAO=45°,AD=3;

(3)根據(jù)題意可設新拋物線對應的函數(shù)表達式為:y=x2+tx+3,

y=x2+tx+3=(x+2+3-

則點C的坐標為(-,3-),

CC平行于直線AD,且經(jīng)過C(0,-3),

直線CC的解析式為:y=x-3,

∴--3=3-,

解得,t1=-4,t2=6,

新拋物線對應的函數(shù)表達式為:y=x2-4x+3y=x2+6x+3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點為定點,定直線上一動點,點分別為的中點,對于下列各值:①線段的長;②的周長;③的面積;④的大小.其中隨點的移動不會變化的是(

A.①②B.①③C.①④D.②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y=圖象上的任意一點,過點A作AB∥x軸,AC∥y軸,分別交反比例函數(shù)y=的圖象于點B,C,連接BC,E是BC上一點,連接并延長AE交y軸于點D,連接CD,則SDEC﹣SBEA=_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是菱形ABCD對角線AC上的一點,連接DP并延長DP交邊AB于點E,連接BP并延長BP交邊AD于點F,交CD的延長線于點G.

(1)求證:APB≌△APD;

(2)已知DF:FA=1:2,設線段DP的長為x,線段PF的長為y.

求y與x的函數(shù)關系式;

當x=6時,求線段FG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,四邊形AOBC是矩形,點O(0,0),點A(5,0),點B(0,3),以點A為中心,順時針旋轉矩形AOBC,得到矩形ADEF,點O、B、C的對應點分別為D、E、F,且點D恰好落在BC邊上.

(1)在原圖上畫出旋轉后的矩形;

(2)求此時點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的面積為12cm2,以頂點A為圓心,適當長為半徑畫弧,分別交ACAB于點M,N,再分別以點MN為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP,過點CCDAP于點D,連接DB,則△DAB的面積是_____cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下圖,正方形ABCD的邊ABx軸上,A(﹣4,0),B(﹣2,0),定義:若某個拋物線上存在一點P,使得點P到正方形ABCD四個頂點的距離相等,則稱這個拋物線為正方形ABCD友好拋物線.若拋物線y=2x2﹣nx﹣n2﹣1是正方形ABCD友好拋物線,則n的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C的中點,CEAB于點E,BDCE于點F.

(1)求證:CF=BF;

(2)CD=5,AC=12,求⊙O的半徑和CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為等邊三角形,,、相交于點于點,

(1)求證:;

(2)求的長.

查看答案和解析>>

同步練習冊答案