【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸l如圖所示,則下列結(jié)論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結(jié)論是( )
A.①③ B.②③ C.②④ D.②③④
【答案】D.
【解析】
試題分析:①∵二次函數(shù)圖象的開口向下,
∴a<0,
∵二次函數(shù)圖象的對稱軸在y軸右側(cè),
∴﹣>0,
∴b>0,
∵二次函數(shù)的圖象與y軸的交點在y軸的正半軸上,
∴c>0,
∴abc<0,故①錯誤;
②∵拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),
∴a﹣b+c=0,故②正確;
③∵a﹣b+c=0,∴b=a+c.
由圖可知,x=2時,y<0,即4a+2b+c<0,
∴4a+2(a+c)+c<0,
∴6a+3c<0,∴2a+c<0,故③正確;
④∵a﹣b+c=0,∴c=b﹣a.
由圖可知,x=2時,y<0,即4a+2b+c<0,
∴4a+2b+b﹣a<0,
∴3a+3b<0,∴a+b<0,故④正確.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:如果關(guān)于的一元二次方程有兩個實數(shù)根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結(jié)論:
①方程是倍根方程;
②若關(guān)于的方程是倍根方程,則a=±3;
③若關(guān)于x的方程是倍根方程,則拋物線與x軸的公共點的坐標(biāo)是(2,0)和(4,0);
④若點(m,n)在反比例函數(shù)的圖象上,則關(guān)于x的方程是倍根方程
上述結(jié)論中正確的有( )
A.①② B.③④ C.②③ D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).
(1)求證無論k為何值,方程總有兩個不相等實數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;
(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若x軸上的點P到y軸的距離為3,則點P的坐標(biāo)為( )
A.(3,0)B.(3,0)或(–3,0)
C.(0,3)D.(0,3)或(0,–3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,AO是高,D為AO上一點,以CD為一邊,在CD下方作等邊△CDE,連接BE.
(1)求證:AD=BE;
(2)過點C作CH⊥BE,交BE的延長線于H,若BC=8,求CH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】烏江快鐵大橋是快鐵渝黔線的一項重要工程,由主橋AB和引橋BC兩部分組成(如圖所示),建造前工程師用以下方式做了測量;無人機(jī)在A處正上方97m處的P點,測得B處的俯角為30°(當(dāng)時C處被小山體阻擋無法觀測),無人機(jī)飛行到B處正上方的D處時能看到C處,此時測得C處俯角為80°36′.
(1)求主橋AB的長度;
(2)若兩觀察點P、D的連線與水平方向的夾角為30°,求引橋BC的長.
(長度均精確到1m,參考數(shù)據(jù):≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年10月1日,重慶四大景區(qū)共接待游客約518 000人,這個數(shù)可用科學(xué)記數(shù)法表示為( )
A.0.518×104
B.5.18×105
C.51.8×106
D.518×103
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com