已知拋物線經(jīng)過坐標原點,與直線相交于A、B兩點,軸、軸分別相交于點C和D;

(1)求A、B兩點的坐標;

(2)若把拋物線向下平移,使得拋物線經(jīng)過點C,此時拋物線與直線 相交于另一點E,與軸相交于點F,求△CEF的面積;

(3)把拋物線上下平移,與直線相交于點G、K,能否使得CG:DK=

1:2,若能成立,請求出向上或向下平移幾個單位,若不能請說明理由。

解:(1)有題得:=

     ∴   

     ∴ 

     ∴ A(-1,),  B(2,2)

(2)把向下平移a個單位經(jīng)過點C,則拋物線變?yōu)椋?sub>

  又得,C(-2,0),  D(0,1)

∴ 0=(-2)2

∴ 

∴   =      

       

    

∴  E(3, )

又 C,F(xiàn)關(guān)于y軸對稱

∴  F(2,0)   ∴ CF=2-(-2)=4

∴S△CEF=×CF×E點縱坐標的絕對值=×4×=5)

(3)設(shè)拋物線上下平移k個單位,G點坐標為(m,),K點坐標為(n,

①G在C上方時      ∴

解得k=0,沒有移動,舍去;

②G在C下方時

解得k=-14,即向下平移14個單位

所以,當拋物線向下平移14個單位時,滿足要求。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線經(jīng)過坐標原點,與x軸的另一個交點為A,且頂點M坐標為(1,2),
(1)求該拋物線的解析式;
(2)現(xiàn)將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P,△CDP的面積為S,求S關(guān)于m的關(guān)系式;
(3)當m=2時,點Q為平移后的拋物線的一動點,是否存在這樣的⊙Q,使得⊙Q與兩坐標軸都相切?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖甲所示,已知拋物線經(jīng)過原點O和x軸上另一點E,頂點M的坐標為(2,4);
(1)求拋物線函數(shù)關(guān)系式;
(2)矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3,將矩形ABCD以每秒1個單位長度的速度從圖甲所示的位置沿x軸的正方向勻速平移,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖乙所示).
①當t=
52
時,判斷點P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由;
③現(xiàn)將甲圖中的拋物線向右平移m(m>0)個單位,所得拋物線與x軸交于G、F兩點,與原拋物線交于點Q,設(shè)△FGQ的面積為S,求S關(guān)于m的函關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知拋物線經(jīng)過坐標原點,與x軸的另一個交點為A,且頂點M坐標為(1,2),
(1)求該拋物線的解析式;
(2)現(xiàn)將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P,△CDP的面積為S,求S關(guān)于m的關(guān)系式;
(3)當m=2時,點Q為平移后的拋物線的一動點,是否存在這樣的⊙Q,使得⊙Q與兩坐標軸都相切?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年福建省福州市第十一中學九年級(上)期中數(shù)學試卷(解析版) 題型:解答題

如圖,已知拋物線經(jīng)過坐標原點,與x軸的另一個交點為A,且頂點M坐標為(1,2),
(1)求該拋物線的解析式;
(2)現(xiàn)將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P,△CDP的面積為S,求S關(guān)于m的關(guān)系式;
(3)當m=2時,點Q為平移后的拋物線的一動點,是否存在這樣的⊙Q,使得⊙Q與兩坐標軸都相切?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年浙江省衢州市江山二中九年級(上)第一次質(zhì)量檢測數(shù)學試卷(解析版) 題型:解答題

如圖甲所示,已知拋物線經(jīng)過原點O和x軸上另一點E,頂點M的坐標為(2,4);
(1)求拋物線函數(shù)關(guān)系式;
(2)矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3,將矩形ABCD以每秒1個單位長度的速度從圖甲所示的位置沿x軸的正方向勻速平移,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設(shè)它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖乙所示).
①當時,判斷點P是否在直線ME上,并說明理由;
②設(shè)以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由;
③現(xiàn)將甲圖中的拋物線向右平移m(m>0)個單位,所得拋物線與x軸交于G、F兩點,與原拋物線交于點Q,設(shè)△FGQ的面積為S,求S關(guān)于m的函關(guān)系式.

查看答案和解析>>

同步練習冊答案