如圖,AB為相交兩圓⊙O1與⊙O的公切線,且O1在⊙O上,大圓⊙O的半徑為4,則公切線AB的長的取值范圍為   
【答案】分析:此題可以把公切線AB轉(zhuǎn)換到由兩圓的半徑差、圓心距組成的直角三角形中;根據(jù)勾股定理,用半徑表示公切線AB的長,再結(jié)合兩圓的位置關(guān)系與數(shù)量之間的聯(lián)系,進(jìn)行分析解答.
解答:解:如圖,設(shè)圓O1的半徑為R,連接OA,O1B,OO1,作O1F⊥OA.
由四邊形ABO1F是矩形,得AB=FO1;由勾股定理得,OO12=OF2+O1F2,
即42=O1F2+(4-R)2
整理得,AB=O1F==,
由于兩圓相交,則R的取值范圍為:0<R<8,
∴0<AB≤4,且當(dāng)R=4時,AB=4.
點評:本題綜合利用了切線的性質(zhì)、勾股定理以及兩圓的位置關(guān)系與數(shù)量之間的聯(lián)系進(jìn)行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB為相交兩圓⊙O1與⊙O的公切線,且O1在⊙O上,大圓⊙O的半徑為4,則公切線AB的長的取值范圍為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB為相交兩圓⊙O1與⊙O的公切線,且O1在⊙O上,大圓⊙O的半徑為4,則公切線AB的長的取值范圍為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《圓》中考題集(62):3.6 圓和圓的位置關(guān)系(解析版) 題型:填空題

如圖,AB為相交兩圓⊙O1與⊙O的公切線,且O1在⊙O上,大圓⊙O的半徑為4,則公切線AB的長的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第3章《直線與圓、圓與圓的位置關(guān)系》中考題集(36):3.3 圓與圓的位置關(guān)系(解析版) 題型:填空題

如圖,AB為相交兩圓⊙O1與⊙O的公切線,且O1在⊙O上,大圓⊙O的半徑為4,則公切線AB的長的取值范圍為   

查看答案和解析>>

同步練習(xí)冊答案