如圖,AB與⊙O相切于點B,AO的延長線交⊙O于點C,連接BC.若∠A=36°,則∠C=    度.
【答案】分析:連接根據(jù)三角形的內(nèi)角和定理就得到關于∠C的方程,從而求出.
解答:解:設AC與⊙O的另一交點為D,連接BD,
則∠DBC=90°,
設∠C=x,
則∠ABD=x,∠BDC=∠A+∠DBA=36°+x;
∵∠CDB+∠C=90°,
∴36°+x+x=90°,
解得x=27°.
點評:考查圓的切線及圓周角、三角形外角等性質(zhì),運用切線的性質(zhì)來進行計算或論證,常通過作輔助線構造直徑所對的圓周角,利用垂直構造直角三角形解決有關問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、如圖,AB與⊙O相切于點B,AO的延長線交⊙O于點C,連接BC.若∠A=36°,則∠C=
27
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,AB與⊙O相切于點B,AO的延長線交⊙O于點C,連接BC,若∠A=40°,則∠C=
25°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB與⊙O相切于點B,AO的延長線交⊙O于點C,連接BC.若∠A=48°,則∠C=
 
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AB與⊙O相切于點C,OA=OB,⊙O的直徑為4,AB=8.則sinA的值是
5
5
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB與⊙O相切于點B,AO的延長線交⊙O于點C,連接BC,若∠A=36°,則∠C=
27°
27°

查看答案和解析>>

同步練習冊答案