已知O是銳角△ABC三邊中垂線的交點(diǎn),∠A=50°,則∠BOC的度數(shù)是


  1. A.
    90°
  2. B.
    95°
  3. C.
    100°
  4. D.
    105°
C
分析:延長(zhǎng)AO交BC于D,根據(jù)垂直平分線的性質(zhì)可得到AO=BO=CO,再根據(jù)等邊對(duì)等角的性質(zhì)得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性質(zhì)可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,從而不難求得∠BOC的度數(shù).
解答:解:延長(zhǎng)AO交BC于D.
∵點(diǎn)O在AB的垂直平分線上.
∴AO=BO.
同理:AO=CO.
∴∠OAB=∠OBA,∠OAC=∠OCA.
∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.
∴∠BOD=2∠OAB,∠COD=2∠OAC.
∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.
∵∠A=50°.
∴∠BOC=100°.
故選C.
點(diǎn)評(píng):此題主要考查:(1)線段垂直平分線的性質(zhì):垂直平分線上任意一點(diǎn),到線段兩端點(diǎn)的距離相等.(2)三角形的外角性質(zhì):三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知D是銳角△ABC外接圓劣弧
BC
的中點(diǎn),弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan
B
2
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•沈河區(qū)模擬)已知⊙O是銳角△ABC的外接圓,AB=5cm,AC=
10
cm,BC.邊上的高AD=3cm.
(1)求△ABC外接圓的半徑.
(2)取
AC
的中點(diǎn)G,連BG交AD于E,試求BE的長(zhǎng).
(3)若動(dòng)點(diǎn)M從點(diǎn)D出發(fā)在線段DB上來(lái)回勻速運(yùn)動(dòng),速度為2cm/秒,動(dòng)點(diǎn)N同時(shí)從點(diǎn)B出發(fā)在劣弧BC上勻速運(yùn)動(dòng),到C點(diǎn)停止運(yùn)動(dòng).問(wèn)是否存在某一時(shí)間(最短時(shí)間)使△MNB與△ADC相似?若存在,試求出MN•MB的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知O是銳角△ABC三邊中垂線的交點(diǎn),∠A=50°,則∠BOC的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知D是銳角△ABC外接圓劣弧數(shù)學(xué)公式的中點(diǎn),弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan數(shù)學(xué)公式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年高一直升考試數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

已知D是銳角△ABC外接圓劣弧的中點(diǎn),弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案