如圖,在正方形ABCD中,對角線AC與BD相交于點O,MN∥AB且分別交AO、BO于M、N.求證:
(1)BM=CN;
(2)BM⊥CN.
證明:∵四邊形ABCD是正方形, ∴OA=OB,∠MAB=∠NBC=. 又∵MN∥AB, ∴AM=BN. 在△ABM和△BCN中,
∴△ABM≌△BCN. ∴BM=CN,∠MBA=∠NCB. 又∵∠ABM+∠CBM=, ∴∠NCB+∠CBM=. ∴NC⊥MB. |
點悟:要證的BM和CN分別位于△ABM和△BCN中,應(yīng)證明△ABM≌△BCN.題中易知AB=BC,∠CAB=∠CBN=,只需再證AM=BN.由MN∥AB不難得出AM=BN.第(2)題中要證BM⊥CN,只需證明∠BCN+∠CBM=即可,在第(1)題的基礎(chǔ)上會得到∠ABM=∠NCB,由∠ABM+∠CBM=即得∠BCN+∠CBM=,即BM⊥CN. 點撥:正方形既具備菱形的性質(zhì),又具備矩形的性質(zhì),是特殊的平行四邊形,其對角線相等、互相垂直平分并且每一組對角的性質(zhì)經(jīng)常在論證和計算中用到. |
科目:初中數(shù)學 來源: 題型:
6 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com