(2013•遵義模擬)如圖,△ABC中,BD和CE是兩條高,如果∠A=45°,則
DE
BC
=
2
2
2
2
分析:由△ABC中BD和CE是兩條高,∠A=45°,易得△AEC和△ABD是等腰直角三角形,則可求得在Rt△ACE,Rt△ABD中,cos∠A=
AE
AC
=
2
2
,cos∠A=
AD
AB
=
2
2
,∠A是公共角,可證得△ADE∽△ACB,然后利用相似三角形的對應邊成比例,求得答案.
解答:解:∵△ABC中BD和CE是兩條高,∠A=45°,
∴∠AEC=∠ADB=90°,
∴∠ACE=∠ABD=45°,
∴△AEC和△ABD是等腰直角三角形,
∴在Rt△ACE,Rt△ABD中,cos∠A=
AE
AC
=
2
2
,
∵cos∠A=
AD
AB
=
2
2
,∠A是公共角,
∴△ADE∽△ACB,
DE
BC
=
AE
AC
=
2
2

故答案為:
2
2
點評:此題考查了相似三角形的判定與性質以及等腰直角三角形的判定與性質.此題難度適中,注意掌握數(shù)形結合思想的應用是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•遵義模擬)用科學記數(shù)法表示0.0000210,結果是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遵義模擬)一元二次方程x2=5x的解為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•遵義模擬)觀察下面方程的解法:x4-13x2+36=0.解:原方程可化為(x2-4)(x2-9)=0,∴(x+2)(x-2)(x+3)(x-3)=0,∴x+2=0或x-2=0或x+3=0或x-3=0,∴x1=2,x2=-2,x3=3,x4=-3.請根據(jù)此解法求出方程x2-3|x|+2=0的解為
x1=2,x2=1,x3=-2,x4=-1
x1=2,x2=1,x3=-2,x4=-1

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省濰坊市中考數(shù)學模擬試卷(一)(解析版) 題型:填空題

(2013•遵義模擬)寫出一條經(jīng)過第一、二、四象限,且過點(-1,3)的直線解析式   

查看答案和解析>>

同步練習冊答案