(2005•武漢)已知⊙O1和⊙O2的半徑分別為3cm和4cm,圓心距O1O2=10cm,那么⊙O1和⊙O2的位置關系是( )
A.內切
B.相交
C.外切
D.外離
【答案】分析:根據數(shù)量關系來判斷兩圓的位置關系.設兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離,則d>R+r;外切,則d=R+r;相交,則R-r<d<R+r;內切,則d=R-r;內含,則d<R-r.
解答:解:∵3+4=7<10,
∴兩圓外離.
故選D.
點評:本題主要考查兩圓的位置關系與數(shù)量之間的聯(lián)系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圓》(12)(解析版) 題型:解答題

(2005•武漢)已知:如圖,直線交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點,交直線O1O2于P點,以O1為圓心,O1P為半徑的圓交x軸于A、B兩點,PB交⊙O2于點F,⊙O1的弦BE=BO,EF的延長線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長線交⊙O1于C點,若G為BC上一動點,以O1G為直徑作⊙O3交O1C于點M,交O1B于N.下列結論:①O1M•O1N為定值;②線段MN的長度不變.只有一個是正確的,請你判斷出正確的結論,并證明正確的結論,以及求出它的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《三角形》(08)(解析版) 題型:解答題

(2005•武漢)已知:如圖,直線交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點,交直線O1O2于P點,以O1為圓心,O1P為半徑的圓交x軸于A、B兩點,PB交⊙O2于點F,⊙O1的弦BE=BO,EF的延長線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長線交⊙O1于C點,若G為BC上一動點,以O1G為直徑作⊙O3交O1C于點M,交O1B于N.下列結論:①O1M•O1N為定值;②線段MN的長度不變.只有一個是正確的,請你判斷出正確的結論,并證明正確的結論,以及求出它的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•武漢)已知拋物線y=-x2+(m-2)x+3(m+1)交x軸于A(x1,0),B(x2,0),交y軸的正半軸于C點,且x1<x2,|x1|>|x2|,OA2+OB2=2OC+1.
(1)求拋物線的解析式;
(2)是否存在與拋物線只有一個公共點C的直線.如果存在,求符合條件的直線的表達式;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年湖北省武漢市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•武漢)已知:如圖,直線交x軸于O1,交y軸于O2,⊙O2與x軸相切于O點,交直線O1O2于P點,以O1為圓心,O1P為半徑的圓交x軸于A、B兩點,PB交⊙O2于點F,⊙O1的弦BE=BO,EF的延長線交AB于D,連接PA、PO.
(1)求證:∠APO=∠BPO;
(2)求證:EF是⊙O2的切線;
(3)EO1的延長線交⊙O1于C點,若G為BC上一動點,以O1G為直徑作⊙O3交O1C于點M,交O1B于N.下列結論:①O1M•O1N為定值;②線段MN的長度不變.只有一個是正確的,請你判斷出正確的結論,并證明正確的結論,以及求出它的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年湖北省武漢市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•武漢)已知拋物線y=-x2+(m-2)x+3(m+1)交x軸于A(x1,0),B(x2,0),交y軸的正半軸于C點,且x1<x2,|x1|>|x2|,OA2+OB2=2OC+1.
(1)求拋物線的解析式;
(2)是否存在與拋物線只有一個公共點C的直線.如果存在,求符合條件的直線的表達式;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案