【題目】觀察下列算式:
22-02=4=4×1
42-22=12=3×4
62-42=20=5×4
82-62=28=7×4
……
(1)按照此規(guī)律,寫出第五個等式;
(2)按照此規(guī)律,寫出第n個等式.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)y= (k≠0)在第一象限的圖象交于A(1,n)和B兩點.
(1)求反比例函數(shù)的解析式與點B坐標(biāo);
(2)求△AOB的面積;
(3)在第一象限內(nèi),當(dāng)一次函數(shù)y=﹣x+5的值小于反比例函數(shù)y= (k≠0)的值時,寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售A、B兩種不同型號的電風(fēng)扇,每種型號電風(fēng)扇的購買單價分別為每臺310元,460元.
(1)若某單位購買A,B兩種型號的電風(fēng)扇共50臺,且恰好支出20000元,求A,B兩種型號電風(fēng)扇各購買多少臺?
(2)若購買A,B兩種型號的電風(fēng)扇共50臺,且支出不超過18000元,求A種型號電風(fēng)扇至少要購買多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校準(zhǔn)備組織290名學(xué)生進行野外考察活動,行李件數(shù)比學(xué)生人數(shù)的一半還少45.學(xué)校計劃租用甲、乙兩種型號的汽車共8輛,經(jīng)了解,甲種汽車每輛最多能載40人和10件行李,乙種汽車最多能載30人和20件行李.
(1)求行李有多少件?
(2)現(xiàn)計劃租用甲種汽車x輛,請你幫學(xué)校設(shè)計所有可能的租車方案.
(3)如果甲、乙兩種汽車每輛的租車費分別是2000元、1800元,請你選擇最省錢的一種租車方案,并求出至少的費用是多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,第一象限內(nèi)長方形ABCD,AB∥y軸,點A(1,1),點C(a,b),滿足 +|b﹣3|=0.
(1)求長方形ABCD的面積.
(2)如圖2,長方形ABCD以每秒1個單位長度的速度向右平移,同時點E從原點O出發(fā)沿x軸以每秒2個單位長度的速度向右運動,設(shè)運動時間為t秒.
①當(dāng)t=4時,直接寫出三角形OAC的面積為 ;
②若AC∥ED,求t的值;
(3)在平面直角坐標(biāo)系中,對于點P(x,y),我們把點P′(﹣y+1,x+1)叫做點P的伴隨點,已知點A1的伴隨點為A2,點A2的伴隨點為A3,點A3的伴隨點為A4,…,這樣依次得到點A1,A2,A3,…,An.
①若點A1的坐標(biāo)為(3,1),則點A3的坐標(biāo)為 ,點A2014的坐標(biāo)為 ;
②若點A1的坐標(biāo)為(a,b),對于任意的正整數(shù)n,點An均在x軸上方,則a,b應(yīng)滿足的條件為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的高,E為AC上一點,BE交AD于H,且有BH=AC,HD=CD.
求證:
(1)△BHD≌△ACD;
(2)BE⊥AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三位歌手進入“我是歌手”的冠、亞、季軍的決賽,他們通過抽簽來決定演唱順序.
(1)求甲第一位出場的概率;
(2)求甲比乙先出場的概率.請用列表法或畫樹狀圖進行分析說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com