如圖(1)線段AB、CD相交于點O,連接AD、CB.如圖(2),在圖(1)的條件下,∠DAB和∠BCD的平分線APCP相交于點P,并且與CD、AB分別相交于MN

試解答下列問題:
(1)在圖(1)中,請直接寫出∠A、∠B、∠C、∠D之間的等量關(guān)系;
(2)在圖(2)中,若∠D=40°,∠B=30°,試求∠P的度數(shù);(寫出解答過程)
(1)∠A+∠D=∠B+∠C
(2)∠P=(40°+30°)÷2=35°.

試題分析: (1) ∵∠AOD=∠A+∠D,∠BOC=∠B+∠C,又∠AOD=∠BOC(對等角相等),∴∠A+∠D=∠B+∠C 
(2) 由(1)可知,∠1+∠D=∠3+∠P, ∠2+∠P=∠4+∠
∴∠1-∠3=∠P-∠D, ∠2-∠4=∠B-∠P   又∵AP、CP分別平分∠DAB和∠BCD 
∴∠1=∠2, ∠3=∠4 ∴∠P-∠D=∠B-∠P  即2∠P=∠B+∠D ∴∠P=(40°+30°)÷2=35°.
點評:本題難度較大,主要考查學(xué)生對三角形性質(zhì)中角平分線性質(zhì)知識點的掌握,并通過分析探究規(guī)律解答,為中考?碱}型,要求學(xué)生注意數(shù)形結(jié)合思想的培養(yǎng),運(yùn)用到考試中去。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點P是菱形ABCD對角線BD上一點,連接CP并延長交AD于點E,交BA的延長線于點F.

(1)求證:∠DCP=∠DAP;
(2)若AB=2,DP∶PB=1∶2,且PA⊥BF,求對角線BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面直角坐標(biāo)系中,直線y=-x+8分別交x軸、y軸于點B、點A,點D從點A出發(fā)沿射線AB方向以每秒1個單位長的速度勻速運(yùn)動,同時點E從點B出發(fā)沿射線BC方向以每秒個單位長的速度勻速運(yùn)動.設(shè)點D、E運(yùn)動的時間是t秒(t>0).過點D作DF⊥AO于點F,連接DE、EF.

(1)當(dāng)t為何值時,△BDE與△BAO相似;
(2)寫出以點D、F、E、O為頂點的四邊形面積s與運(yùn)動時間t之間的函數(shù)關(guān)系;
(3)是否存在這樣一個時刻,此時以點D、F、E、B為頂點的四邊形是菱形,如果存在,求出相應(yīng)的t的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知OA=OB,那么數(shù)軸上點A所表示的數(shù)是____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

某機(jī)器零件的橫截面如圖所示,按要求線段AB和DC的延長線相交成直角才算合格,一工人測得∠A=23°,∠D=31°,∠AED=143°,請你幫他判斷該零件是否合格   不(填“合格”或“不合格”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,ABCD相交于點O,OA=OC,還需增加一個條件:____________________,可得△AOD≌△COB(AAS) ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果一個正多邊形的每個外角為36°,那么這個正多邊形的邊數(shù)是
A.12B.10C.9D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,學(xué)校有一塊長方形花圃,有極少數(shù)同學(xué)為了避開拐角走“捷徑”,在花圃內(nèi)走出了一條“路”,他們僅僅少走了     米,卻踩傷了花草.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個等腰三角形的兩邊長分別是2cm和3cm,則它的周長是              cm.

查看答案和解析>>

同步練習(xí)冊答案