【題目】如圖,△ABC的面積是12,點D,E,F(xiàn),G分別是BC,AD,BE,CE的中點,則△AFG的面積是( )
A.4.5
B.5
C.5.5
D.6
【答案】A
【解析】解:∵點D,E,F(xiàn),G分別是BC,AD,BE,CE的中點, ∴AD是△ABC的中線,BE是△ABD的中線,CF是△ACD的中線,AF是△ABE的中線,AG是△ACE的中線,
∴△AEF的面積= ×△ABE的面積= ×△ABD的面積= ×△ABC的面積= ,
同理可得△AEG的面積= ,
△BCE的面積= ×△ABC的面積=6,
又∵FG是△BCE的中位線,
∴△EFG的面積= ×△BCE的面積= ,
∴△AFG的面積是 ×3= ,
故選:A.
【考點精析】利用三角形的面積和三角形中位線定理對題目進行判斷即可得到答案,需要熟知三角形的面積=1/2×底×高;連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.
科目:初中數學 來源: 題型:
【題目】某課題研究小組就圖形面積問題進行專題研究,他們發(fā)現(xiàn)如下結論: ①有一條邊對應相等的兩個三角形面積之比等于這條邊上的對應高之比;
②有一個角對應相等的兩個三角形面積之比等于夾這個角的兩邊乘積之比;
…
現(xiàn)請你繼續(xù)對下面問題進行探究,探究過程可直接應用上述結論.(S表示面積)
問題1:如圖1,現(xiàn)有一塊三角形紙板ABC,P1 , P2三等分邊AB,R1 , R2三等分邊AC.經探究知 = S△ABC , 請證明.
問題2:若有另一塊三角形紙板,可將其與問題1中的拼合成四邊形ABCD,如圖2,Q1 , Q2三等分邊DC.請?zhí)骄? 與S四邊形ABCD之間的數量關系.
問題3:如圖3,P1 , P2 , P3 , P4五等分邊AB,Q1 , Q2 , Q3 , Q4五等分邊DC.若S四邊形ABCD=1,求 .
問題4:如圖4,P1 , P2 , P3四等分邊AB,Q1 , Q2 , Q3四等分邊DC,P1Q1 , P2Q2 , P3Q3將四邊形ABCD分成四個部分,面積分別為S1 , S2 , S3 , S4 . 請直接寫出含有S1 , S2 , S3 , S4的一個等式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,把矩形OABC沿對角線AC所在直線折疊,點B落在點D處,DC與y軸相交于點E,矩形OABC的邊OC,OA的長是關于x的一元二次方程x2﹣12x+32=0的兩個根,且OA>OC.
(1)求線段OA,OC的長;
(2)求證:△ADE≌△COE,并求出線段OE的長;
(3)直接寫出點D的坐標;
(4)若F是直線AC上一個動點,在坐標平面內是否存在點P,使以點E,C,P,F(xiàn)為頂點的四邊形是菱形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為 的中點,作DE⊥AC,交AB的延長線于點F,連接DA.
(1)求證:EF為半圓O的切線;
(2)若DA=DF=6 ,求陰影區(qū)域的面積.(結果保留根號和π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了維護國家主權和海洋權利,海監(jiān)部門對我國領海實現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務的海監(jiān)船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續(xù)航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.
(1)求∠APB的度數;
(2)已知在燈塔P的周圍25海里內有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校召集留守兒童過端午節(jié),桌上擺有甲、乙兩盤粽子,每盤中盛有白粽2個,豆沙粽1個,肉粽1個(粽子外觀完全一樣).
(1)小明從甲盤中任取一個粽子,取到豆沙粽的概率是;
(2)小明在甲盤和乙盤中先后各取了一個粽子,請用樹狀圖或列表法求小明恰好取到兩個白粽子的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如表是一個4×4(4行4列共16個“數”組成)的奇妙方陣,從這個方陣中選四個“數”,而且這四個“數”中的任何兩個不在同一行,也不在同一列,有很多選法,把每次選出的四個“數”相加,其和是定值,則方陣中第三行三列的“數”是( )
30 |
| 2 sin60° | 22 |
﹣3 | ﹣2 | ﹣ sin45° | 0 |
|﹣5| | 6 | 23 | |
( )﹣1 | 4 |
| ( )﹣1 |
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著互聯(lián)網、移動終端的迅速發(fā)展,數字化閱讀越來越普及,公交上的“低頭族”越來越多.某研究機構針對“您如何看待數字化閱讀”問題進行了隨機問卷調查(如圖1),并將調查結果繪制成圖2和圖3所示的統(tǒng)計圖(均不完整).
請根據統(tǒng)計圖中提供的信息,解答下列問題:
(1)求出本次接受調查的總人數,并將條形
統(tǒng)計圖補充完整;
(2)表示觀點B的扇形的圓心角度數為度;
(3)若嘉興市人口總數約為270萬,請根據圖中信息,估計湖州市民認同觀點D的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校用簡單隨機抽樣方法抽取了100名同學,對其日均課外閱讀時間(單位:分鐘)進行調查,結果如下:
t | [0,15) | [15,30) | [30,45) | [45,60) | [60,75) | [75,90) |
男同學人數 | 7 | 11 | 15 | 12 | 2 | 1 |
女同學人數 | 8 | 9 | 17 | 13 | 3 | 2 |
若將日均課外閱讀時間不低于60分鐘的學生稱為“讀書迷”.
(1)將頻率視為概率,估計該校4000名學生中“讀書迷”有多少人?
(2)從已抽取的8名“讀書迷”中隨機抽取4位同學參加讀書日宣傳活動. (i)求抽取的4位同學中既有男同學又有女同學的概率;
(ii)記抽取的“讀書迷”中男生人數為X,求X的分布列和數學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com