請閱讀下面材料:

, 是拋物線a ≠ 0)上不同的兩點,證明直線 為此拋物線的對稱軸.

有一種方法證明如下:

 
證明:∵ ,是拋物線a ≠ 0)上不同的兩點,        

      ∴         且

  ①-②得 .

   ∴ .

 ∴ .

 又∵ 拋物線a ≠ 0)的對稱軸為,

 ∴ 直線為此拋物線的對稱軸.

 (1)反之,如果, 是拋物線a ≠ 0)上不同的

兩點,直線 為該拋物線的對稱軸,那么自變量取,時函數(shù)值相等嗎?寫出你的猜想,并參考上述方法寫出證明過程;

  (2)利用以上結論解答下面問題:

已知二次函數(shù)x = 4 時的函數(shù)值與x = 2007 時的函數(shù)值相等,求x = 2012時的函數(shù)值.

解:(1)結論:自變量取,時函數(shù)值相等.

            證明:∵ ,為拋物線上不同的兩點,

 
               由題意得         且

           ①-②,得 .

                ∵ 直線是拋物線a ≠ 0)的對稱軸,

                ∴ .

                ∴ .

             ∴ ,即

(閱卷說明:其他代數(shù)證明方法相應給分;直接利用拋物線的對稱性而

沒有用代數(shù)方法進行證明的不給分)

  (2)∵ 二次函數(shù)x = 4 時的函數(shù)值與x = 2007 時的函數(shù)值相等,

       ∴ 由閱讀材料可知二次函數(shù)的對稱軸為直線.

       ∴ ,.

       ∴ 二次函數(shù)的解析式為.

       ∵

由(1)知,當x = 2012的函數(shù)值與時的函數(shù)值相等.

∵ 當x =時的函數(shù)值為,

       ∴ 當x = 2012 時的函數(shù)值為2011. 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下面材料:
若A(x1,y0),B(x2,y0) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點,證明直線x=
x1+x2
2
為此拋物線的對稱軸.
有一種方法證明如下:
①②
證明:∵A(x1,y0),B(x2,y0) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點
y0=a
x
2
1
+bx1+c①
y0=a
x
2
2
+bx2+c②
且 x1≠x2
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.
x1+x2=-
b
a

又∵拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-
b
2a

∴直線x=
x1+x2
2
為此拋物線的對稱軸.
(1)反之,如果M(x1,y1),N(x2,y2) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點,直線x=
x1+x2
2
為該拋物線的對稱軸,那么自變量取x1,x2時函數(shù)值相等嗎?寫出你的猜想,并參考上述方法寫出證明過程;
(2)利用以上結論解答下面問題:
已知二次函數(shù)y=x2+bx-1當x=4時的函數(shù)值與x=2007時的函數(shù)值相等,求x=2012時的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

請閱讀下面材料:
若A(x1,y0),B(x2,y0) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點,證明直線x=
x1+x2
2
為此拋物線的對稱軸.
有一種方法證明如下:
①②
證明:∵A(x1,y0),B(x2,y0) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點
y0=a
x21
+bx1+c①
y0=a
x22
+bx2+c②
且 x1≠x2
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.
x1+x2=-
b
a

又∵拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-
b
2a
,
∴直線x=
x1+x2
2
為此拋物線的對稱軸.
(1)反之,如果M(x1,y1),N(x2,y2) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點,直線x=
x1+x2
2
為該拋物線的對稱軸,那么自變量取x1,x2時函數(shù)值相等嗎?寫出你的猜想,并參考上述方法寫出證明過程;
(2)利用以上結論解答下面問題:
已知二次函數(shù)y=x2+bx-1當x=4時的函數(shù)值與x=2007時的函數(shù)值相等,求x=2012時的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下面材料:
, 是拋物線(a ≠ 0)上不同的兩點,證明直線為此拋物線的對稱軸.
有一種方法證明如下:



 
證明:∵,是拋物線(a ≠ 0)上不同的兩點,       

     ∴        且
①-②得 .
.
.
又∵ 拋物線(a ≠ 0)的對稱軸為,
∴ 直線為此拋物線的對稱軸.
(1)反之,如果, 是拋物線(a ≠ 0)上不同的兩點,直線為該拋物線的對稱軸,那么自變量取,時函數(shù)值相等嗎?寫出你的猜想,并參考上述方法寫出證明過程;
(2)利用以上結論解答下面問題:
已知二次函數(shù)當x = 4 時的函數(shù)值與x = 2007 時的函數(shù)值相等,求x = 2012時的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源:2011屆北京市門頭溝區(qū)初三第一學期期末數(shù)學卷 題型:解答題

請閱讀下面材料:
 是拋物線(a ≠ 0)上不同的兩點,證明直線為此拋物線的對稱軸.
有一種方法證明如下:



 
證明:∵,是拋物線(a ≠ 0)上不同的兩點,       

     ∴        且
①-②得 .
.
.
又∵ 拋物線(a ≠ 0)的對稱軸為,
∴ 直線為此拋物線的對稱軸.
(1)反之,如果, 是拋物線(a ≠ 0)上不同的兩點,直線為該拋物線的對稱軸,那么自變量取,時函數(shù)值相等嗎?寫出你的猜想,并參考上述方法寫出證明過程;
(2)利用以上結論解答下面問題:
已知二次函數(shù)當x = 4 時的函數(shù)值與x = 2007 時的函數(shù)值相等,求x = 2012時的函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年江蘇省南通市如東縣九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

請閱讀下面材料:
若A(x1,y),B(x2,y) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點,證明直線為此拋物線的對稱軸.
有一種方法證明如下:
①②
證明:∵A(x1,y),B(x2,y) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點
且 x1≠x2
①-②得 a(x12-x22)+b(x1-x2)=0.
∴(x1-x2)[a(x1+x2)+b]=0.

又∵拋物線y=ax2+bx+c(a≠0)的對稱軸為,
∴直線為此拋物線的對稱軸.
(1)反之,如果M(x1,y1),N(x2,y2) 是拋物線y=ax2+bx+c(a≠0)上不同的兩點,直線為該拋物線的對稱軸,那么自變量取x1,x2時函數(shù)值相等嗎?寫出你的猜想,并參考上述方法寫出證明過程;
(2)利用以上結論解答下面問題:
已知二次函數(shù)y=x2+bx-1當x=4時的函數(shù)值與x=2007時的函數(shù)值相等,求x=2012時的函數(shù)值.

查看答案和解析>>

同步練習冊答案