如圖,A(0,6),C(1,0),H(0,1),且BH⊥AC.

(1)求點B的坐標;
(2)如圖,若A,B,C在⊙M上,MN⊥BC于點N,求證:AH=2MN;

(3)以O為圓心,OA為半徑作扇形OAB(如圖),P為扇形OAB的 
AB
上異于A,B的動點,PE⊥OA于點E,PF⊥OB于點F,D,Q在EF上,且ED=DQ=QF.①當點P在 
AB
上運動時,在線段PE,PD,ED中,是否存在長度不變的線段?若存在,請求出該線段的長度,若不存在,請說明理由.②PE2+3PQ2的值是定值嗎?若是,請求出這個定值,若不是,請說明理由.
分析:(1)延長BH,設于AC交于點P,根據(jù)余角的性質(zhì),即可推出∠HBO=∠CAO,易證Rt△BOH≌Rt△AOC,則OA=OB,即可得到B點坐標;
(2)⊙M交y軸于D,過M點作MG⊥OA于G,根據(jù)圓周角定理得到∠DBC=∠DAC,則∠DBO=∠HBO,得到OD=OH=1,再根據(jù)垂徑定理得DG=AG=
1
2
DA=3.5,則OG=3.5-1=2.5,利用矩形的性質(zhì)得MN=OG=2.5,而AH=AO-OH=6-1=5,即可得到結(jié)論;
(3)①四邊形PEOF為矩形,線段PF和PE的長隨P的變化而變化,則EF=OP=6,而ED=DQ=QF,則DE=
1
3
EF=2;
②過Q作QC⊥PF于C,則QC∥PE,得到CQ:PE=FC:FP=FQ:FE=1:3,求得CQ=
1
3
PE,CF=
1
3
PF,在Rt△PCQ中利用勾股定理得PQ2=PC2+CQ2,然后進行線段代換即可得到PPE2+3PQ2=PE2+
4
3
PF2+
1
3
PE2=
4
3
(PF2+PE2)=
4
3
EF2=
4
3
×62=48.
解答:解:(1)延長BH交AC于P,如圖,
∵BH⊥AC,
∴∠HBO=∠OAC,
∵C(1,0),H(0,1),
∴OH=OC,
∴Rt△BOH≌Rt△AOC,
∴OB=OA,
而A(0,6),
∴B(-6,0);

(2)⊙M交y軸于D,過M點作MG⊥OA于G,如圖,
∴∠DBC=∠DAC,
∴∠DBO=∠HBO,
∴OD=OH=1,
∴DG=AG=
1
2
DA=3.5,
∴OG=3.5-1=2.5,
而MN⊥BC,
∴四邊形MNOG為矩形,
∴MN=OG=2.5,
又∵AH=AO-OH=6-1=5,
∴AH=2MN;

(3)①存在長度不變的線段DE.
∵PE⊥OA,PF⊥OB于F,
∴四邊形PEOF為矩形,線段PF和PE的長隨P的變化而變化,
∴EF=OP=6,
而ED=DQ=QF,
∴DE=
1
3
EF=2;
②PE2+3PQ2的值是定值.
過Q作QC⊥PF于C,如圖,
∴QC∥PE,
∴CQ:PE=FC:FP=FQ:FE=1:3,
∴CQ=
1
3
PE,CF=
1
3
PF,
∴PC=
2
3
PF,
在Rt△PCQ中,PQ2=PC2+CQ2,
∴PQ2=
4
9
PF2+
1
9
PE2
∴PE2+3PQ2=PE2+
4
3
PF2+
1
3
PE2=
4
3
(PF2+PE2)=
4
3
EF2=
4
3
×62=48.
點評:本題考查了垂徑定理:垂直于弦的直徑平分弦,平分弦所對的。部疾榱巳切稳鹊呐卸ㄅc性質(zhì)、三角形相似的判定與性質(zhì)以及勾股定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知A,B兩點是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點,過A,B兩點分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點得菱形,又順次連接菱形各邊中點得矩形,再順次連接矩形各邊中點得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如圖是某幾何體的三視圖,則這個幾何體是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖AB是⊙O的直徑,⊙O過BC的中點D,且DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案