如圖,正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)n°后得到正方形AEFG,邊EF與CD交于點(diǎn)O.
(1)請(qǐng)?jiān)趫D中連接兩條線段(正方形的對(duì)角線除外).要求:①所連接的兩條線段是以圖中已標(biāo)有字母的點(diǎn)為端點(diǎn);②所連接的兩條線段互相垂直.
(2)若正方形的邊長(zhǎng)為2cm,重疊部分(四邊形AEOD)的面積為
4
3
3
cm2
,旋轉(zhuǎn)的角度n是多少度?請(qǐng)說明理由.
(1)AO⊥DE.
證明:∵在Rt△ADO與Rt△AEO中,
AD=AE
AO=AO
,
∴Rt△ADO≌Rt△AEO(HL),
∴∠DAO=∠OAE(即AO平分∠DAE),
∴AO⊥DE(等腰三角形的三線合一).

(2)n=30°.
理由:連接AO,
∵四邊形AEOD的面積為
4
3
3
,
∴三角形ADO的面積
AD×DO
2
=
2
3
3
,
∵AD=2,
∴DO=
2
3
3
,
在Rt△ADO中,
∵tan∠DAO=
DO
AD
=
3
3
,
∴∠DAO=30°,
∴∠EAD=60°,∠EAB=30°,
即n=30°.故旋轉(zhuǎn)的角度n是30°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形的邊長(zhǎng)為6,經(jīng)過點(diǎn)(0,-4)的直線,把正方形分成面積相等的兩部分,則直線的函數(shù)解析式______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點(diǎn)O(0,0),B(0,1)是正方形OBB1C的兩個(gè)頂點(diǎn),以對(duì)角線OB1為一邊作正方形OB1B2C1,再以正方形OB1B2C1的對(duì)角線OB2為一邊作正方形OB2B3C2,依次下去,則點(diǎn)B7的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,邊長(zhǎng)為6的大正方形中有兩個(gè)小正方形,若兩個(gè)小正方形的面積分別為S1,S2,則S1+S2的值為( 。
A.16B.17C.18D.19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

正方形具有而菱形不一定具有的性質(zhì)是(  )
A.對(duì)角線互相垂直B.對(duì)角線平分一組對(duì)角
C.對(duì)角線相等D.對(duì)角線互相平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖.邊長(zhǎng)為1的兩個(gè)正方形互相重合,按住其中一個(gè)不動(dòng),將另一個(gè)繞頂點(diǎn)A順時(shí)針旋轉(zhuǎn)45°,則這兩個(gè)正方形重疊部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,AE是角平分線,AD是△ABC外角∠CAG的平分線,CF⊥AD于F.
(1)試說明四邊形AECF為矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形AECF是一個(gè)正方形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖正方形ABCD,E、F分別為AD、AB的中點(diǎn),CE、DF交于P,求證:CE⊥DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在正方形ABCD的邊BC的延長(zhǎng)線上取一點(diǎn)E,使CE=AC,AE交CD于點(diǎn)F.那么,∠ACB=______°,∠E=______°.

查看答案和解析>>

同步練習(xí)冊(cè)答案