【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心的圓,經(jīng)過(guò)A,B兩點(diǎn),且與BC邊交于點(diǎn)E,D為BE的下半圓弧的中點(diǎn),連接AD交BC于F,AC=FC.

(1)求證:AC是⊙O的切線;

(2)已知圓的半徑R=5,EF=3,求DF的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2).

【解析】

試題分析:(1)連結(jié)OA、OD,如圖,根據(jù)垂徑定理的推理,由D為BE的下半圓弧的中點(diǎn)得到OD⊥BE,則∠D+∠DFO=90°,再由AC=FC得到∠CAF=∠CFA,根據(jù)對(duì)頂角相等得∠CFA=∠DFO,所以∠CAF=∠DFO,加上∠OAD=∠ODF,則∠OAD+∠CAF=90°,于是根據(jù)切線的判定定理即可得到AC是⊙O的切線;

(2)由于圓的半徑R=5,EF=3,則OF=2,然后在Rt△ODF中利用勾股定理計(jì)算DF的長(zhǎng).

試題解析:(1)連結(jié)OA、OD,如圖,

∵D為BE的下半圓弧的中點(diǎn),

∴OD⊥BE,

∴∠D+∠DFO=90°,

∵AC=FC,

∴∠CAF=∠CFA,

∵∠CFA=∠DFO,

∴∠CAF=∠DFO,

而OA=OD,

∴∠OAD=∠ODF,

∴∠OAD+∠CAF=90°,即∠OAC=90°,

∴OA⊥AC,

∴AC是⊙O的切線;

(2)∵圓的半徑R=5,EF=3,

∴OF=2,

在Rt△ODF中,∵OD=5,OF=2,

∴DF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角三角形中30°角所對(duì)的直角邊為2cm,則斜邊的長(zhǎng)為(
A.2cm
B.4cm
C.6cm
D.8cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)正數(shù)的兩個(gè)平方根分別是2m+1m-4,則這個(gè)正數(shù)是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=(m1x+m21是正比例函數(shù),則m_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為進(jìn)一步推廣“陽(yáng)光體育”大課間活動(dòng),某中學(xué)對(duì)已開(kāi)設(shè)的A實(shí)心球,B立定跳遠(yuǎn),C跑步,D跳繩四種活動(dòng)項(xiàng)目的學(xué)生喜歡情況進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:

(1)請(qǐng)計(jì)算本次調(diào)查中喜歡“跑步”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;

(2)隨機(jī)抽取了5名喜歡“跑步”的學(xué)生,其中有3名女生,2名男生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝原價(jià)為300元,連續(xù)兩次漲價(jià)a%后,售價(jià)為363元,則a的值為(  )

A. 5B. 10C. 15D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)一個(gè)多邊形的邊數(shù)增加時(shí),它的內(nèi)角和與外角和的變化情況分別是( 。

A.增大,增大B.不變,不變C.不變,增大D.增大,不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分7分)完成下列各題:

(1)如圖,點(diǎn)A,B,D,E在同一直線上,AB=ED,AC∥EF,∠C=∠F.求證:AC=EF.

(2)如圖,在△ABC中,AD是BC邊上的高,∠C=45°,sinB=,AD=1.求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是菱形,點(diǎn)C的坐標(biāo)為(4,0),AOC=60°,垂直于軸的直線l從軸出發(fā),沿軸正方向以每秒1個(gè)單位長(zhǎng)度的速度向右平移,設(shè)直線l與菱形OABC的兩邊分別交于點(diǎn)M,N(點(diǎn)M在點(diǎn)N的上方),若OMN的面積為S,直線l的運(yùn)動(dòng)時(shí)間為t 秒。試問(wèn):S與t的函數(shù)關(guān)析式?

查看答案和解析>>

同步練習(xí)冊(cè)答案