19.如圖,正方形OABC的邊長(zhǎng)為2,以O(shè)為圓心,EF為直徑的半圓經(jīng)過(guò)點(diǎn)A,連接AE,CF相交于點(diǎn)P,將正方形OABC從OA與OF重合的位置開(kāi)始,繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,交點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)是(  )
A.B.$\sqrt{2}$πC.3$\sqrt{2}$D.4

分析 如圖,連接AC.首先證明∠EPF=135°,推出點(diǎn)P在與K為圓心的圓上,點(diǎn)P的運(yùn)動(dòng)軌跡是$\widehat{EPF}$,在⊙K上取一點(diǎn)M,連接ME、MF、EK、FK,則∠M=180°-∠EPF=45°,推出∠EKF=2∠M=90°,因?yàn)镋F=4,所以KE=KF=2$\sqrt{2}$,根據(jù)弧長(zhǎng)公式計(jì)算即可解決問(wèn)題.

解答 解:如圖,連接AC.

∵AOCB是正方形,
∴∠AOC=90°,
∴∠AFC=$\frac{1}{2}$∠AOC=45°,
∵EF是直徑,
∴∠EAF=90°,
∴∠APF=∠AFP=45°,
∴∠EPF=135°,
∴點(diǎn)P在與K為圓心的圓上,點(diǎn)P的運(yùn)動(dòng)軌跡是$\widehat{EPF}$,
在⊙K上取一點(diǎn)M,連接ME、MF、EK、FK,則∠M=180°-∠EPF=45°,
∴∠EKF=2∠M=90°,
∵EF=4,
∴KE=KF=2$\sqrt{2}$,
∴P運(yùn)動(dòng)的路徑長(zhǎng)=$\frac{90π•2\sqrt{2}}{180}$=$\sqrt{2}$π,
故選B.

點(diǎn)評(píng) 本題考查軌跡、正方形的性質(zhì)、旋轉(zhuǎn)變換、圓的有關(guān)知識(shí)、弧長(zhǎng)公式等知識(shí),解題的關(guān)鍵是正確尋找點(diǎn)P的運(yùn)動(dòng)軌跡,屬于中考?碱}型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,∠B=45°,∠C=30°.
(1)如圖1,若AB=5$\sqrt{2}$,求BC的長(zhǎng);
(2)點(diǎn)D是BC邊上一點(diǎn),連接AD,將線(xiàn)段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到線(xiàn)段AE.
①如圖2,當(dāng)點(diǎn)E在A(yíng)C邊上時(shí),求證:CE=2BD;
②如圖3,當(dāng)點(diǎn)E在A(yíng)C的垂直平分線(xiàn)上時(shí),直接寫(xiě)出$\frac{AB}{CE}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.按照要求畫(huà)圖:
(1)如圖甲,在平面直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(-1,3),(-4,1),(-2,1),將△ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)為點(diǎn)A1,B1,C1.畫(huà)出旋轉(zhuǎn)后的△A1B1C1
(2)如圖乙,下列3×3網(wǎng)格都是由9個(gè)相同小正方形組成,每個(gè)網(wǎng)格圖中有3個(gè)小正方形已涂上陰影,請(qǐng)?jiān)谟嘞碌?個(gè)空白小正方形中,選取1個(gè)涂上陰影,使4個(gè)陰影小正方形組成一個(gè)中心對(duì)稱(chēng)圖形(畫(huà)出兩種即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,已知弧BC的半徑為3,圓心角為120°,圓心為點(diǎn)A.D為弧BC上一動(dòng)點(diǎn),以D為旋轉(zhuǎn)中心,將點(diǎn)B順時(shí)針旋轉(zhuǎn)120°得到點(diǎn)E.若點(diǎn)D從B運(yùn)動(dòng)到點(diǎn)C,則點(diǎn)E的運(yùn)動(dòng)路徑長(zhǎng)為(  )
A.3$\sqrt{3}$πB.2$\sqrt{3}$πC.12D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.解方程:
(1)4(y+4)=3-5(7-2y);     
(2)$\frac{x+5}{3}$-$\frac{3x-2}{2}$=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知a+b=3,ab=2,則a2+b2的值為( 。
A.1B.5C.6D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若x=-1是方程2x-3a=7的解,則a的值為-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知:二次函數(shù)y=x2+(2m+1)x+m2-1與x軸有兩個(gè)交點(diǎn).
(1)求m的取值范圍;
(2)寫(xiě)出一個(gè)滿(mǎn)足條件的m的值,并求此時(shí)二次函數(shù)與x軸的交點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列語(yǔ)句準(zhǔn)確規(guī)范的是( 。
A.直線(xiàn)a、b相交于點(diǎn)mB.延長(zhǎng)直線(xiàn)AB
C.延長(zhǎng)射線(xiàn)AO到點(diǎn)BD.直線(xiàn)AB、CD相交于點(diǎn)M

查看答案和解析>>

同步練習(xí)冊(cè)答案