(2010•成都)已知四邊形ABCD,有以下四個條件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD.從這四個條件中任選兩個,能使四邊形ABCD成為平行四邊形的選法種數(shù)共有( )
A.6種
B.5種
C.4種
D.3種
【答案】分析:根據(jù)平行四邊形的判定方法即可找到所有組合方式:(1)兩組對邊平行①③;(2)兩組對邊相等②④;(3)一組對邊平行且相等①②或③④,所以有四種組合.
解答:解:依題意得有四種組合方式:
(1)①③,利用兩組對邊平行的四邊形是平行四邊形判定;
(2)②④,利用兩組對邊相等的四邊形是平行四邊形判定;
(3)①②或③④,利用一組對邊平行且相等的四邊形是平行四邊形判定.
故選C.
點評:此題主要考查了平行四邊形的判定方法,熟練掌握平行四邊形的判定方法是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2010•成都)已知:如圖,△ABC內接于⊙O,AB為直徑,弦CE⊥AB于F,C是的中點,連接BD并延長交EC的延長線于點G,連接AD,分別交CE、BC于點P、Q.
(1)求證:P是△ACQ的外心;
(2)若,求CQ的長;
(3)求證:(FP+PQ)2=FP•FG.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《四邊形》(08)(解析版) 題型:解答題

(2010•成都)已知:在菱形ABCD中,O是對角線BD上的一動點.
(1)如圖甲,P為線段BC上一點,連接PO并延長交AD于點Q,當O是BD的中點時,求證:OP=OQ;
(2)如圖乙,連接AO并延長,與DC交于點R,與BC的延長線交于點S.若AD=4,∠DCB=60°,BS=10,求AS和OR的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《三角形》(17)(解析版) 題型:解答題

(2010•成都)已知:如圖,AB與⊙O相切于點C,OA=OB,⊙O的直徑為4,AB=8.
(1)求OB的長;
(2)求sinA的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省成都市中考數(shù)學試卷(解析版) 題型:解答題

(2010•成都)已知:如圖,△ABC內接于⊙O,AB為直徑,弦CE⊥AB于F,C是的中點,連接BD并延長交EC的延長線于點G,連接AD,分別交CE、BC于點P、Q.
(1)求證:P是△ACQ的外心;
(2)若,求CQ的長;
(3)求證:(FP+PQ)2=FP•FG.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省成都市中考數(shù)學試卷(解析版) 題型:解答題

(2010•成都)已知:在菱形ABCD中,O是對角線BD上的一動點.
(1)如圖甲,P為線段BC上一點,連接PO并延長交AD于點Q,當O是BD的中點時,求證:OP=OQ;
(2)如圖乙,連接AO并延長,與DC交于點R,與BC的延長線交于點S.若AD=4,∠DCB=60°,BS=10,求AS和OR的長.

查看答案和解析>>

同步練習冊答案