【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱(chēng)軸與x軸交于點(diǎn)E,點(diǎn)D為頂點(diǎn),連接BD、CD、BC.

(1)求二次函數(shù)解析式及頂點(diǎn)坐標(biāo);
(2)點(diǎn)P為線段BD上一點(diǎn),若SBCP= ,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為拋物線上一點(diǎn),作MN⊥CD,交直線CD于點(diǎn)N,若∠CMN=∠BDE,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)M的坐標(biāo).

【答案】
(1)解:把A(﹣1,0)和B(3,0)兩點(diǎn)代入拋物線y=x2+bx+c中得:

,解得: ,

∴拋物線的解析式為:y=x2﹣2x﹣3=(x﹣1)2﹣4,

∴D(1,﹣4)


(2)解:C(0,﹣3),由勾股定理得:BC2=32+32=18,

CD2=12+(4﹣3)2=2,

BD2=(3﹣1)2+42=20,

∴CD2+BC2=BD2,

即∠BCD=90°,

∴△BCD是直角三角形;

∴SBCD=3

由SBCP=

∴P為BD中點(diǎn).

∴P(2,﹣2)


(3)解:∵∠CMN=∠BDE,

∴tan∠BDE=tan∠CMN= = ,

=

同理得:CD的解析式為:y=﹣x﹣3,

設(shè)N(a,﹣a﹣3),M(x,x2﹣2x﹣3),

①如圖2,過(guò)N作GF∥y軸,過(guò)M作MG⊥GF于G,過(guò)C作CF⊥GF于F,

則△MGN∽△NFC,

=2,

= =2,

,

∴x1=0(舍),x2=5,

當(dāng)x=5時(shí),x2﹣2x﹣3=12,

∴M(5,12),

②如圖3,過(guò)N作FG∥x軸,交y軸于F,過(guò)M作MG⊥GF于G,

∴△CFN∽△NGM,

= ,

= = ,則

∴x1=0(舍),x2=

當(dāng)x= 時(shí),y=x2﹣2x﹣3=﹣

∴M( ,﹣ ),

綜上所述,點(diǎn)M的坐標(biāo)(5,12)或( ,﹣ ).


【解析】(1)利用待定系數(shù)法即可得出結(jié)論,進(jìn)而配成頂點(diǎn)式,得出頂點(diǎn)坐標(biāo);
(2)先利用勾股定理逆定理判斷出△BCD是直角三角形,進(jìn)而判斷出點(diǎn)P是BD的中點(diǎn),即可得出結(jié)論;
(3)先求出CD的解析式,再分點(diǎn)N在線段CD上和CD的延長(zhǎng)線上,構(gòu)造相似三角形即可得出結(jié)論。
【考點(diǎn)精析】本題主要考查了確定一次函數(shù)的表達(dá)式和勾股定理的逆定理的相關(guān)知識(shí)點(diǎn),需要掌握確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類(lèi)問(wèn)題的一般方法是待定系數(shù)法;如果三角形的三邊長(zhǎng)a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A(0,4)、B(6,0)、C(0,﹣10),平移線段AB至線段CD,點(diǎn)Q在線段DB上,滿(mǎn)足SQOCSQOB52,SQCDSQBD,則點(diǎn)Q的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段OA交⊙O于點(diǎn)B,且OB=AB,點(diǎn)P是⊙O上的一個(gè)動(dòng)點(diǎn),那么∠OAP的最大值是(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)將每件進(jìn)價(jià)為80元的某種商品原來(lái)按每件100元出售,一天可售出100件.后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低1元,其銷(xiāo)量可增加10件.
(1)求商場(chǎng)經(jīng)營(yíng)該商品原來(lái)一天可獲利潤(rùn)多少元?
(2)設(shè)后來(lái)該商品每件降價(jià)x元,商場(chǎng)一天可獲利潤(rùn)y元.
①若商場(chǎng)經(jīng)營(yíng)該商品一天要獲利潤(rùn)2160元,則每件商品應(yīng)降價(jià)多少元?
②求出y與x之間的函數(shù)關(guān)系式,并直接寫(xiě)出當(dāng)x取何值時(shí),商場(chǎng)獲利潤(rùn)不少于2160元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了貫徹落實(shí)健康第一的指導(dǎo)思想,促進(jìn)學(xué)生全面發(fā)展,國(guó)家每年都要對(duì)中學(xué)生進(jìn)行一次體能測(cè)試,測(cè)試結(jié)果分“優(yōu)秀”、“良好”、“及格”、“不及格”四個(gè)等級(jí),某學(xué)校從七年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生的體能測(cè)試結(jié)果進(jìn)行分析,并根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)這兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題
(1)本次抽樣調(diào)查共抽取多少名學(xué)生?
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)在扇形統(tǒng)計(jì)圖中,求測(cè)試結(jié)果為“良好”等級(jí)所對(duì)應(yīng)圓心角的度數(shù).
(4)若該學(xué)校七年級(jí)共有600名學(xué)生,請(qǐng)你估計(jì)該學(xué)校七年級(jí)學(xué)生中測(cè)試結(jié)果為“不及格”等級(jí)的學(xué)生有多少名?
(5)請(qǐng)你對(duì)“不及格”等級(jí)的同學(xué)提一個(gè)友善的建議(一句話即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某沿海開(kāi)放城市A接到臺(tái)風(fēng)警報(bào),在該市正南方向100kmB處有一臺(tái)風(fēng)中心,沿BC方向以20km/h的速度向D移動(dòng),已知城市ABC的距離AD=60km,那么臺(tái)風(fēng)中心經(jīng)過(guò)多長(zhǎng)時(shí)間從B點(diǎn)移到D點(diǎn)?如果在距臺(tái)風(fēng)中心30km的圓形區(qū)域內(nèi)都將有受到臺(tái)風(fēng)的破壞的危險(xiǎn),正在D點(diǎn)休閑的游人在接到臺(tái)風(fēng)警報(bào)后的幾小時(shí)內(nèi)撤離才可脫離危險(xiǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩條直線AB、CD相交于點(diǎn)O,且,射線OMOB開(kāi)始繞O點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn),速度為,射線ON同時(shí)從OD開(kāi)始繞O點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn),速度為兩條射線OM、ON同時(shí)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t本題出現(xiàn)的角均小于平角

當(dāng)時(shí),的度數(shù)為多少,的度數(shù)為多少;的度數(shù)為多少;

當(dāng)時(shí),若,試求出t的值;

當(dāng)時(shí),探究的值,問(wèn):t滿(mǎn)足怎樣的條件是定值;滿(mǎn)足怎樣的條件不是定值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四個(gè)數(shù):a= b= (3) c= (1)2019, d=

(1) 化簡(jiǎn)a,bc,d a= b= ,c= d= ;

(2) 把這四個(gè)數(shù)在數(shù)軸上分別表示出來(lái):

3)用 ab,c,d 連接起來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對(duì)稱(chēng)點(diǎn)為點(diǎn)D,連接AD,BD,其中BD交直線AP于點(diǎn)E.

(1)依題意補(bǔ)全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);

(3)連結(jié)CE,寫(xiě)出AE, BE, CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案