【題目】如圖,直線l為y=x,過點A1(1,0)作A1B1⊥x軸,與直線l交于點B1,以原點O為圓心,OB1長為半徑畫圓弧交x軸于點A2;再作A2B2⊥x軸,交直線l于點B2,以原點O為圓心,OB2長為半徑畫圓弧交x軸于點A3;……,按此作法進(jìn)行下去,則點An的坐標(biāo)為(_______).
【答案】2n﹣1,0
【解析】依據(jù)直線l為y=x,點A1(1,0),A1B1⊥x軸,可得A2(2,0),同理可得,A3(4,0),A4(8,0),…,依據(jù)規(guī)律可得點An的坐標(biāo)為(2n﹣1,0).
∵直線l為y=x,點A1(1,0),A1B1⊥x軸,
∴當(dāng)x=1時,y=,
即B1(1,),
∴tan∠A1OB1=,
∴∠A1OB1=60°,∠A1B1O=30°,
∴OB1=2OA1=2,
∵以原點O為圓心,OB1長為半徑畫圓弧交x軸于點A2,
∴A2(2,0),
同理可得,A3(4,0),A4(8,0),…,
∴點An的坐標(biāo)為(2n﹣1,0),
故答案為:2n﹣1,0.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AD是⊙O直徑,E是CB延長線上一點,且∠BAE=∠C.
(1)求證:直線AE是⊙O的切線;
(2)若∠BAE=30°,⊙O的半徑為2,求陰影部分的面積;
(3)若EB=AB,cos∠E=,AE=24,求EB的長及⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c過點A(0,2).
(1)若點(﹣,0)也在該拋物線上,求a,b滿足的關(guān)系式;
(2)若該拋物線上任意不同兩點M(x1,y1),N(x2,y2)都滿足:當(dāng)x1<x2<0時,(x1﹣x2)(y1﹣y2)>0;當(dāng)0<x1<x2時,(x1﹣x2)(y1﹣y2)<0.以原點O為心,OA為半徑的圓與拋物線的另兩個交點為B,C,且△ABC有一個內(nèi)角為60°.
①求拋物線的解析式;
②若點P與點O關(guān)于點A對稱,且O,M,N三點共線,求證:PA平分∠MPN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前我國建立了比較完善的經(jīng)濟(jì)困難學(xué)生資助體系.某校去年上半年發(fā)放給每個經(jīng)濟(jì)困難學(xué)生389元,今年上半年發(fā)放了438元,設(shè)每半年發(fā)放的資助金額的平均增長率為,則下面列出的方程中正確的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的例題,范例:解方程,
解:(1)當(dāng)≥0時,原方程化為,解得:,(不合題意,舍去).
(2)當(dāng)<0時,原方程化為,解得:,(不合題意,舍去).
∴原方程的根是,
請參照例題解方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:等邊△ABC中,點E為△ABC內(nèi)一點.
(1)如圖1,聯(lián)結(jié)AE、BE并延長分別與BC、CA邊交于點D、F。如果∠AEB=120°,求證:△ABD△BCF。
(2)如圖2、以AE為一邊作等邊△AEF,聯(lián)結(jié)BE、CF,求證:BE=CF.
(3)如圖3、點D為BC的中點,聯(lián)結(jié)BE、CE,若∠BEC=120°,聯(lián)結(jié)AE、DE,求證:AE=2DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中∠BAC=90°,D,E分別是AB,BC的中點,F在CA的延長線上∠FDA=∠B,AC=6,AB=8,則四邊形AEDF的周長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com