精英家教網 > 初中數學 > 題目詳情
把兩個全等的等腰直角三角板△ABC和△EFG(其直角邊長均為4)疊放在一起(如圖1),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現將三角板EFG繞O點順時針方向旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖2).在上述旋轉過程中,BH與CK有怎樣的數量關系?四邊形CHGK的面積有何變化?證明你發(fā)現的結論.
【答案】分析:利用旋轉的性質,圖形的形狀和大小不變,可以得到角的度數沒有變化,進一步可以得到∠BGF=∠BGE,得證△BGH≌△CGK,全等三角形的面積相等,則四邊形CHGK的面積等于△BGC的面積,所以四邊形CHGK的面積不變.
解答:解:在上述旋轉過程中,BH=CK,四邊形CHGK的面積不變.
證明:
∵△ABC為等腰直角三角形,G(O)為其斜邊中點,
∴CG=BG,CG⊥AB,且S△BCG=S△ABC
∴∠ACG=∠B=45°.
∵∠BGH與∠CGK均為旋轉角,
∴∠BGH=∠CGK.
在△BGH和△CGK中,
∴△BGH≌△CGK.
∴BH=CK,
S△BGH=S△CGK
∴S四邊形CHGK=S△CHG+S△CGK=S△CHG+S△BGH=S△BCG=S△ABC=××4×4=4.
即:旋轉過程中,BH=CK,S四邊形CHGK的面積為4,是一個定值,在旋轉過程中沒有變化.
點評:本題考查的是旋轉的性質以及全等三角形的判定的綜合運用,難度中上.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網把兩個全等的等腰直角三角形ABC和EFG(其直角邊長均為4)疊放在一起(如圖①),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現將三角板EFG繞O點逆時針旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖②).
(1)在上述旋轉過程中,BH與CK有怎樣的數量關系四邊形CHGK的面積有何變化?證明你發(fā)現的結論;
(2)連接HK,在上述旋轉過程中,設BH=x,△GKH的面積為y,求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的
516
?若存在,求出此時x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

把兩個全等的等腰直角三角板△ABC和△EFG(其直角邊長均為4)疊放在一起(如圖1),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現將三角板EFG繞O點順時針方向旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖2).在上述旋轉過程中,BH與CK有怎樣的數量關系?四邊形CHGK的面積有何變化?證明你發(fā)現的結論.精英家教網

查看答案和解析>>

科目:初中數學 來源:云南省期末題 題型:解答題

把兩個全等的等腰直角三角板△ABC和△EFG(其直角邊長均為4)疊放在一起(如圖1),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現將三角板EFG繞O點順時針方向旋轉(旋轉角滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖2).在上述旋轉過程中,BH與CK有怎樣的數量關系?四邊形CHGK的面積有何變化?證明你發(fā)現的結論.

查看答案和解析>>

科目:初中數學 來源:第25章《圖形的變換》常考題集(13):25.2 旋轉變換(解析版) 題型:解答題

把兩個全等的等腰直角三角形ABC和EFG(其直角邊長均為4)疊放在一起(如圖①),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現將三角板EFG繞O點逆時針旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖②).
(1)在上述旋轉過程中,BH與CK有怎樣的數量關系四邊形CHGK的面積有何變化?證明你發(fā)現的結論;
(2)連接HK,在上述旋轉過程中,設BH=x,△GKH的面積為y,求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的?若存在,求出此時x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源:第23章《旋轉》?碱}集(04):23.1 圖形的旋轉(解析版) 題型:解答題

把兩個全等的等腰直角三角形ABC和EFG(其直角邊長均為4)疊放在一起(如圖①),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現將三角板EFG繞O點逆時針旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分(如圖②).
(1)在上述旋轉過程中,BH與CK有怎樣的數量關系四邊形CHGK的面積有何變化?證明你發(fā)現的結論;
(2)連接HK,在上述旋轉過程中,設BH=x,△GKH的面積為y,求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的?若存在,求出此時x的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案