如圖,已知在△ABC中,AB=AC,∠A=36°,BD為∠ABC的平分線,則
AD
AC
的值等于
5
-1
2
5
-1
2
分析:求出AD=BD=BC,證△ABC∽△BDC,推出
BC
CD
=
AC
BC
,求出BC2=AD2=AC×(AC-AD),求出AD=
5
-1
2
AC,代入求出即可.
解答:解:∵AB=AC,∠A=36°,
∴∠C=∠ABC=
1
2
(180°-∠A)=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=36°=∠A,
∴AD=BD,
∵∠C=72°,∠CBD=36°,
∴由三角形內角和定理得:∠BDC=72°=∠C,
∴BD=BC=AD,
∵∠C=∠C,∠CBD=∠A,
∴△ABC∽△BDC,
BC
CD
=
AC
BC
,
∴BC2=AC×CD,
∵AD=BD=BC,
∴AD2=AC×CD=AC×(AC-AD),
解關于AD的方程得:AD=
5
-1
2
AC,
AD
AC
=
5
-1
2
AC
AC
=
5
-1
2
,
故答案為:
5
-1
2
點評:本題考查了三角形的內角和定理,等腰三角形的判定,角平分線定義,相似三角形的性質和判定,黃金分割等知識點的綜合運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、如圖,已知在△ABC中,AD、AE分別是BC邊上的高和中線,AB=9cm,AC=7cm,BC=8m,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,BD為∠ABC的平分線,AB=BC,點P在BD上,PM⊥AD于M,PN⊥CD于N,求證:PM=PN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分線.
(1)∠ADC=
60°
60°

(2)求證:BC=CD+AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,∠B與∠C的平分線交于點P.當∠A=70°時,則∠BPC的度數(shù)為
125°
125°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在△ABC中,CD=CE,∠A=∠ECB,試說明CD2=AD•BE.

查看答案和解析>>

同步練習冊答案