【題目】如圖1,在平面直角坐標(biāo)系中,OAOB,點(diǎn)B的坐標(biāo)為(1,0),AB,線段OB上的動(dòng)點(diǎn)(點(diǎn)C不與O、B重合),連接AC,ACCD,DEx軸,垂足為點(diǎn)E.

(1)求證:ACOCDE;

(2)猜想BDE的形狀,并證明結(jié)論:

(3)如圖2,當(dāng)BCD為等腰三角形時(shí),求點(diǎn)D的坐標(biāo).

【答案】1)見(jiàn)詳解;(2)等腰直角三角形;(3)(-1

【解析】

1)根據(jù)垂直的定義得到∠ACD=90°,根據(jù)余角的性質(zhì)得到∠ACO=CDE,根據(jù)全等三角形的判定定理即可得到結(jié)論;
2)根據(jù)全等三角形的性質(zhì)得到AO=CE,CO=DE,求得OB=CE,得到OC+CB=BE+CB,由等腰直角三角形的判定定理即可得到結(jié)論;
3)設(shè)D點(diǎn)的縱坐標(biāo)為m,當(dāng)△BCD為等腰三角形時(shí),①BC=BD,②CD=BD=m,③當(dāng)CD=BCCE根據(jù)題意列方程即可得到結(jié)論.

解:(1)∵ACCD,
∴∠ACD=90°,
∴∠ACO+DCE=90°,
∵作DEx軸,AOOB,
∴∠DEC=COA=90°,
∴∠CDE+DCE=90°,
∴∠ACO=CDE,
在△ACO與△CDE

∴△ACO≌△CDEAAS);
2)△BDE為等腰直角三角形,
理由:∵△ACO≌△CDE
AO=CE,CO=DE
OA=CE,CO=DE,
OA=OB
OB=CE,
OC+CB=BE+CB,
OC=BE=DE,
∵∠DEB=90°,
∴△BDE是等腰直角三角形;
3)解:設(shè)D點(diǎn)的縱坐標(biāo)為m
當(dāng)△BCD為等腰三角形時(shí),
BC=BD,∵△BDE是等腰直角三角形,
DE=BE=m,

BD=BC=m
CE=AO=1,
m+m=1
m=-1,
D-1);
CD=BD=m
OC=DE=m,
AC=CD=m,
解得:m=±1(舍去),
③當(dāng)CD=BCCE(這種情況不存在0,
綜上所述,當(dāng)△BCD為等腰三角形時(shí),點(diǎn)D的坐標(biāo)(,-1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,現(xiàn)有兩點(diǎn)M、N分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度為,點(diǎn)N的速度為當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).

點(diǎn)M,N運(yùn)動(dòng)幾秒后,M、N兩點(diǎn)重合?

點(diǎn)M、N運(yùn)動(dòng)幾秒后,可得到等邊三角形?

當(dāng)點(diǎn)M、NBC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰三角形AMN?如存在,請(qǐng)求出此時(shí)M、N運(yùn)動(dòng)的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于一元二次方程ax2+bx+c=0(a≠0)下列說(shuō)法正確的是( 。

a,c異號(hào),則方程ax2+bx+c=0(a≠0)一定有實(shí)數(shù)根;

b24ac>0,則方程ax2+bx+c=0(a≠0)一定有兩個(gè)不相等實(shí)數(shù)根;

b=a+c,則方程ax2+bx+c=0(a≠0)有兩個(gè)不相等的實(shí)數(shù)根;

若方程ax2+bx+c=0(a≠0)的兩根符號(hào)相同,那么方程cx2+bx+a=0(c≠0)的兩根符號(hào)也相同.

A. 只有①③ B. 只有①②④ C. 只有①② D. 只有②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,斜邊,的中點(diǎn),以為圓心,線段的長(zhǎng)為半徑畫圓心角為的扇形,弧經(jīng)過(guò)點(diǎn),則圖中陰影部分的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】雜技團(tuán)進(jìn)行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點(diǎn))的路線是拋物線的一部分,如圖

(1)求演員彈跳離地面的最大高度;

(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點(diǎn)A的水平距離是4米,問(wèn)這次表演是否成功?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有、兩枚均勻的小立方體(立方體的每個(gè)面上分別標(biāo)有數(shù)字、、、).用小明擲立方體朝上的數(shù)字為小明擲立方體朝上的數(shù)字為來(lái)確定點(diǎn),則小明各擲一次所確定的點(diǎn)落在已知拋物線上的概率是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,點(diǎn)所在平面內(nèi)一點(diǎn),過(guò)點(diǎn)分別作于點(diǎn),于點(diǎn),交于點(diǎn).

若點(diǎn)上(如圖①),此時(shí),可得結(jié)論:.

請(qǐng)應(yīng)用上述信息解決下列問(wèn)題:

當(dāng)點(diǎn)分別在內(nèi)(如圖②),外(如圖③)時(shí),上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,,,與之間又有怎樣的數(shù)量關(guān)系,請(qǐng)寫出你的猜想,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊AD,BC的中點(diǎn),連接DF,過(guò)點(diǎn)EEHDF,垂足為H,EH的延長(zhǎng)線交DC于點(diǎn)G.

(1)猜想DGCF的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)過(guò)點(diǎn)HMNCD,分別交AD,BC于點(diǎn)M,N,若正方形ABCD的邊長(zhǎng)為10,點(diǎn)PMN上一點(diǎn),求△PDC周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ADBCD,下列條件①∠B+DAC=90°;②∠B=DAC;=;AB2=BDBC . 其中一定能夠判定ABC是直角三角形的有( )個(gè).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案