5.一元二次方程x2=2的解為±$\sqrt{2}$.

分析 利用直接開平方法解方程得出答案.

解答 解:∵x2=2,
∴x1=$\sqrt{2}$,x2=-$\sqrt{2}$.
故答案為:±$\sqrt{2}$.

點(diǎn)評(píng) 此題主要考查了直接開平方法解方程,正確開平方是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,已知⊙O的直徑AB=5,點(diǎn)P是AB延長(zhǎng)線上的一點(diǎn),且PB=2,過點(diǎn)P的一直線交⊙O于點(diǎn)C和點(diǎn)D.若PD=x,PC=y,則下列最能反映y關(guān)于x的函數(shù)關(guān)系的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.△ABC中,D是BC上一點(diǎn),P是AD上一點(diǎn),若∠1=∠2,PB=PC.求證:AD⊥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.某班將買一些乒乓球和乒乓球拍,現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍.乒乓球拍每副定價(jià)30元,乒乓球每盒定價(jià)5元,經(jīng)洽談后,甲店每買一副球拍贈(zèng)一盒乒乓球,乙店全部按定價(jià)的9折優(yōu)惠.該班需球拍5副,乒乓球x盒(不小于5盒).
(1)請(qǐng)用含x的代數(shù)式表示兩家商店的付款.
(2)試比較哪家商店更合算.
(3)現(xiàn)需球拍5副,乒乓球40盒,請(qǐng)?jiān)O(shè)計(jì)出最佳省錢方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.$\frac{{\sqrt{2-x}}}{{\sqrt{x-1}}}$有意義,則x的取值范圍是1<x≤2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.解下列不等式,并把解集在數(shù)軸上表示出來:
(1)3x+4≤6+2(x-2)
(2)$\frac{3x-2}{5}$≥$\frac{2x+1}{3}$-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

17.已知在△ABC中,AD是BC邊上的高,若AB=13,AD=12,AC=15,則BC=14或4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在平行四邊形ABCD中,BE=DF,求證:四邊形AECF為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)系原點(diǎn),點(diǎn)A(3a,2a)在第一象限,過點(diǎn)A向x軸作垂線,垂足為點(diǎn)B,連接OA,S△AOB=12.點(diǎn)M從點(diǎn)O出發(fā),沿y軸的正半軸以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)N從點(diǎn)B出發(fā),沿射線BO以每秒3個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),點(diǎn)M與點(diǎn)N同時(shí)出發(fā),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,連接AM,AN,MN.
(1)求a的值;
(2)當(dāng)0<t<2時(shí),
①請(qǐng)?zhí)骄俊螦NM,∠OMN,∠BAN之間的數(shù)量關(guān)系,并說明理由;
②試判斷四邊形AMON的面積是否變化?若不變化,請(qǐng)求出;若變化,請(qǐng)說明理由.
(3)當(dāng)OM=ON時(shí),請(qǐng)求出t的值及△AMN的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案