如圖①,②,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為(4,0),以點(diǎn)為圓心,4為半徑的圓與軸交于,兩點(diǎn),為弦,,是軸上的一動(dòng)點(diǎn),連結(jié).
(1)求的度數(shù);
(2)如圖①,當(dāng)與相切時(shí),求的長(zhǎng);
(3)如圖②,當(dāng)點(diǎn)在直徑上時(shí),的延長(zhǎng)線與相交于點(diǎn),問為何值時(shí),是等腰三角形?
解:(1)∵,,∴是等邊三角形.∴.
(2)∵CP與相切,
∴.
∴.
又∵(4,0),∴.∴.
∴.
(3)①過點(diǎn)作,垂足為,延長(zhǎng)交于,
∵是半徑, ∴,∴,
∴是等腰三角形.
又∵是等邊三角形,∴=2 .
②解法一:過作,垂足為,延長(zhǎng)交于,與軸交于,
∵是圓心, ∴是的垂直平分線. ∴.
∴是等腰三角形,
過點(diǎn)作軸于,
在中,∵,
∴.∴點(diǎn)的坐標(biāo)(4+,).
在中,∵
,
∴.
∴點(diǎn)坐標(biāo)(2,).
設(shè)直線的關(guān)系式為:,則有
解得:
∴.
當(dāng)時(shí),. ∴.
解法二: 過A作,垂足為,延長(zhǎng)交于,與軸交于,
∵是圓心, ∴是的垂直平分線. ∴.∴是等腰三角形.
∵,∴.
∵平分,∴.
∵是等邊三角形,, ∴.
∴.∴是等腰直角三角形.
∴.∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
多面體 | 面數(shù)a | 展開圖的頂點(diǎn)數(shù)b | 展開圖的棱數(shù)c |
直三棱柱 | 5 | 10 | 14 |
四棱錐 | 5 5 |
8 | 12 |
立方體 | 6 6 |
14 14 |
19 19 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 華師大八年級(jí)版 2009-2010學(xué)年 第13期 總第169期 華師大版 題型:044
工具閱讀:
在平面上畫兩條原點(diǎn)重合、互相垂直且具有相同單位長(zhǎng)度的數(shù)軸(如圖),這就建立了平面直角坐標(biāo)系.通常把其中水平的一條數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩數(shù)軸的交點(diǎn)O叫做坐標(biāo)原點(diǎn).
問題探究:如圖1,在6×6的方格紙中,給出如下三種變換:P變換,Q變換,R變換.
將圖形F沿x軸向右平移1格得圖形F1,稱為作1次P變換;
將圖形F沿y軸翻折得圖形F2,稱為作1次Q變換;
將圖形F繞坐標(biāo)原點(diǎn)順時(shí)針旋轉(zhuǎn)90°得圖形F3,稱為作1次R變換.
規(guī)定:PQ變換表示先作1次Q變換,再作1次P變換;QP變換表示先作1次P變換,再作1次Q變換;Rn變換表示作n次R變換.
解答下列問題:
(1)作R4變換相當(dāng)于至少作________次Q變換;
(2)請(qǐng)?jiān)趫D2中畫出圖形F作R2011變換后得到的圖形F4;
(3)PQ變換與QP變換是否是相同的變換?請(qǐng)?jiān)趫D3中畫出PQ變換后得到的圖形F5,在圖4中畫出QP變換后得到的圖形F6.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市南開中學(xué)九年級(jí)(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com