問題情境:如圖1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于點D,可知:∠BAD=∠C(不需要證明);
特例探究:如圖2,∠MAN=90°,射線AE在這個角的內(nèi)部,點B、C在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點F,BD⊥AE于點D.證明:△ABD≌△CAF;
歸納證明:如圖3,點B,C在∠MAN的邊AM、AN上,點E,F(xiàn)在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF;
拓展應(yīng)用:如圖4,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為
5
5

分析:圖2,求出∠BDA=∠AFC=90°,∠ABD=∠CAF,根據(jù)AAS證兩三角形全等即可;圖③根據(jù)已知和三角形外角性質(zhì)求出∠ABE=∠CAF,∠BAE=∠FCA,根據(jù)ASA證兩三角形全等即可;圖④求出△ABD的面積,根據(jù)△ABE≌△CAF得出△ACF與△BDE的面積之和等于△ABD的面積,即可得出答案.
解答:證明:圖②,
∵CF⊥AE,BD⊥AE,∠MAN=90°,
∴∠BDA=∠AFC=90°,
∴∠ABD+∠BAD=90°,∠ABD+∠CAF=90°,
∴∠ABD=∠CAF,
在△ABD和△CAF中,
∠ADB=∠CFA
∠ABD=∠CAF
AB=AC
,
∴△ABD≌△CAF(AAS);
圖③,
∵∠1=∠2=∠BAC,∠1=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∠2=∠FCA+∠CAF,
∴∠ABE=∠CAF,∠BAE=∠FCA,
在△ABE和△CAF中,
∠ABE=∠CAF
AB=AC
∠BAE=∠ACF

∴△ABE≌△CAF(ASA);
圖④,
解:∵△ABC的面積為15,CD=2BD,
∴△ABD的面積是:
1
3
×15=5,
由圖3中證出△ABE≌△CAF,
∴△ACF與△BDE的面積之和等于△ABE與△BDE的面積之和,即等于△ABD的面積,是5,
故答案為:5.
點評:本題考查了全等三角形的性質(zhì)和判定,三角形的面積,三角形的外角性質(zhì)等知識點,主要考查學(xué)生的分析問題和解決問題的能力,題目比較典型,證明過程有類似之處.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•連云港)小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連接AE并延長交BC的延長線于點F,求證:S四邊形ABCD=S△ABF(S表示面積)

問題遷移:如圖2:在已知銳角∠AOB內(nèi)有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值,請問當(dāng)直線MN在什么位置時,△MON的面積最小,并說明理由.

實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門計劃以公路OA、OB和經(jīng)過防疫站P的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25,
3
≈1.73)
拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A、B、C、P的坐標(biāo)分別為(6,0)(6,3)(
9
2
,
9
2
)、(4、2),過點p的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣陽區(qū)一模)問題情境:
如圖,正方形ABCD的邊長為6,點E是射線BC上的一個動點,連結(jié)AE并延長,交射線DC于點F,將△ABE沿直線AE翻折,點B坐在點B′處.
自主探究:
(1)當(dāng)
BE
CE
=1時,如圖1,延長AB′,交CD于點M.
     ①CF的長為
6
6

     ②求證:AM=FM.
(2)當(dāng)點B′恰好落在對角線AC上時,如圖2,此時CF的長為
6
2
6
2
,
BE
CE
=
2
2
2
2

拓展運用:
 (3)當(dāng)
BE
CE
=2時,求sin∠DAB′的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題情境:如圖1,直角三角板ABC中,∠C=90°,AC=BC,將一個用足夠長的細(xì)鐵絲制作的直角的頂點D放在直角三角板ABC的斜邊AB上,再將該直角繞點D旋轉(zhuǎn),并使其兩邊分別與三角板的AC邊、BC邊交于P、Q兩點.
問題探究:
(1)在旋轉(zhuǎn)過程中,
①如圖2,當(dāng)AD=BD時,線段DP、DQ有何數(shù)量關(guān)系?并說明理由.
②如圖3,當(dāng)AD=2BD時,線段DP、DQ有何數(shù)量關(guān)系?并說明理由.
③根據(jù)你對①、②的探究結(jié)果,試寫出當(dāng)AD=nBD時,DP、DQ滿足的數(shù)量關(guān)系為
 
(直接寫出結(jié)論,不必證明)
(2)當(dāng)AD=BD時,若AB=20,連接PQ,設(shè)△DPQ的面積為S,在旋轉(zhuǎn)過程中,S是否存在最小值或最大值?若存在,求出最小值或最大值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

問題情境:如圖1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于點D,可知:∠BAD=∠C(不需要證明);
特例探究:如圖2,∠MAN=90°,射線AE在這個角的內(nèi)部,點B、C在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點F,BD⊥AE于點D.證明:△ABD≌△CAF;
歸納證明:如圖3,點B,C在∠MAN的邊AM、AN上,點E,F(xiàn)在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF;
拓展應(yīng)用:如圖4,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為________.

查看答案和解析>>

同步練習(xí)冊答案