關(guān)于x的方程,
(1)a為何值時(shí),方程的一根為0?
(2)a為何值時(shí),兩根互為相反數(shù)?
(3)試證明:無(wú)論a取何值,方程的兩根不可能互為倒數(shù).
(1)a=1時(shí),方程的一根為0;
(2)當(dāng)a=2時(shí),原方程的兩根互為相反數(shù);
(3)無(wú)論a取何值,方程的兩根不可能互為倒數(shù).
【解析】
試題分析:(1)若方程的一根為0,則兩根的積必為0,根據(jù)此關(guān)系可求出a的值;
(2)根據(jù)相反數(shù)的概念及一元二次方程兩根之和與系數(shù)的關(guān)系解答即可;
(3)根據(jù)倒數(shù)的概念及一元二次方程兩根之積與系數(shù)的關(guān)系證明即可.
試題解析:(1)∵關(guān)于x的方程2x2﹣(a2﹣4)x﹣a+1=0,一根為0,
∴=0,
∴﹣a+1=0,解得a=1,
∴a=1時(shí),方程的一根為0;
(2)∵關(guān)于x的方程2x2﹣(a2﹣4)x﹣a+1=0,兩根互為相反數(shù),
∴=0,解得:a=±2;
把a=2代入原方程得,2x2﹣1=0,x=±,
把a=﹣2代入原方程得,2x2+3=0,x2=,無(wú)解.
故當(dāng)a=2時(shí),原方程的兩根互為相反數(shù);
(3)因?yàn)榛榈箶?shù)的兩個(gè)數(shù)積為1,所以x1x2==1,
即=1,
解得,a=﹣1,
把a=﹣1代入原方程得,2x2+3x+2=0,
∵△=32﹣4×2×2=﹣7<0,
∴原方程無(wú)解,
∴無(wú)論a取何值,方程的兩根不可能互為倒數(shù).
考點(diǎn):1.根與系數(shù)的關(guān)系,2.一元二次方程的解,3.根的判別式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com