如圖1,在平面直角坐標系中,點A的坐標為(1,-2),點B的坐標為(3,-1),二次函數(shù)y=-x2的圖象為l1
(1)平移拋物線l1,使平移后的拋物線過點A,但不過點B,寫出平移后的拋物線的一個解析式(任寫一個即可);
(2)平移拋物線l1,使平移后的拋物線過A、B兩點,記拋物線為l2,如圖2,求拋物線l2的函數(shù)解析式及頂點C的坐標;
(3)設(shè)P為y軸上一點,且S△ABC=S△ABP,求點P的坐標;
(4)請在圖2上用尺規(guī)作圖的方式探究拋物線l2上是否存在點Q,使△QAB為等腰三角形?若存在,請判斷點Q共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由.
【答案】分析:做這類題時要綜合二次函數(shù)的圖象,及等腰三角形的知識.
解答:解:(1)讓拋物線過點A,即把點A的坐標代入計算,得到,b+c=-1,不過點B,則把點B的坐標代入得到3b+c≠8,依此兩個要求,隨便找一個數(shù)即可.故平移后的拋物線的一個解析式y(tǒng)=-x2+2x-3或y=-x2+4x-5等(滿足條件即可);(1分)

(2)設(shè)l2的解析式為y=-x2+bx+c,聯(lián)立方程組,
解得:,則l2的解析式為y=-x2+x-.(3分)
點C的坐標為().(4分)

(3)如答圖1,過點A、B、C三點分別作x軸的垂線,垂足分別為D、E、F,
則AD=2,CF=,BE=1,DE=2,DF=,F(xiàn)E=
得:S△ABC=S梯形ABED-S梯形BCFE-S梯形ACFD=.(5分)
延長BA交y軸于點G,直線AB的解析式為y=x-,則點G的坐標為(0,),設(shè)點P的坐標為(0,h),
①當點P位于點G的下方時,,連接AP、BP,
則S△ABP=S△BPG-S△APG=--h,又S△ABC=S△ABP=,得,點P的坐標為(0,).(6分)
②當點P位于點G的上方時,,同理,點P的坐標為(0,).
綜上所述所求點P的坐標為(0,)或(0,)(7分)

(4)作圖痕跡如答圖2所示.
若AB為等腰三角形的腰,則分別以A、B為圓心,以AB長為半徑畫圓,交拋物線分別于Q1、Q2;
若AB為等腰三角形的底邊,則作AB的垂直平分線,交拋物線分別于Q3、Q4,
由圖可知,滿足條件的點有Q1、Q2、Q3、Q4,共4個可能的位置.(10分)
點評:本題綜合考查了二次函數(shù)的圖象與平移的有關(guān)知識.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標為(-3,0).
(1)點A的坐標為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源:同步輕松練習 八年級 數(shù)學 上 題型:059

學校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應(yīng)各點.

(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當n=10時,s的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年北京海淀區(qū)九年級第一學期期中測評數(shù)學試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時發(fā)現(xiàn):

如圖1,當點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點再繞著點旋轉(zhuǎn)180°得到點,這時點與點重合.

如圖2,當點為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,點繞著點旋轉(zhuǎn)180°得到點,小明發(fā)現(xiàn)P、兩點關(guān)于點中心對稱.

(1)請在圖2中畫出點, 小明在證明P、兩點關(guān)于點中心對稱時,除了說明P、、三點共線之外,還需證明;

(2)如圖3,在平面直角坐標系xOy中,當、為旋轉(zhuǎn)中心時,點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點;點繞著點旋轉(zhuǎn)180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),
(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作______.

查看答案和解析>>

同步練習冊答案