科目:初中數學 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:初中數學 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:初中數學 來源:2013年初中畢業(yè)升學考試(江西卷)數學(解析版) 題型:解答題
某數學活動小組在作三角形的拓展圖形,研究其性質時,經歷了如下過程:
●操作發(fā)現:
在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側作等腰直角三角形,如圖1所示,其中DF⊥AB于點F,EG⊥AC于點G,M是BC的中點,連接MD和ME,則下列結論正確的是 (填序號即可)
①AF=AG=AB;②MD=ME;③整個圖形是軸對稱圖形;④∠DAB=∠DMB.
●數學思考:
在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側作等腰直角三角形,如圖2所示,M是BC的中點,連接MD和ME,則MD和ME具有怎樣的數量和位置關系?請給出證明過程;
●類比探索:
在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內側作等腰直角三角形,如圖3所示,M是BC的中點,連接MD和ME,試判斷△MED的形狀.
答: .
查看答案和解析>>
科目:初中數學 來源: 題型:
某數學活動小組在作三角形的拓展圖形,研究其性質時,經歷了如下過程:
●操作發(fā)現:
在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側作等腰直角三角形,如圖1所示,其中DF⊥AB于點F,EG⊥AC于點G,M是BC的中點,連接MD和ME,則下列結論正確的是 (填序號即可)
①AF=AG=AB;②MD=ME;③整個圖形是軸對稱圖形;④∠DAB=∠DMB.
●數學思考:
在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側作等腰直角三角形,如圖2所示,M是BC的中點,連接MD和ME,則MD和ME具有怎樣的數量和位置關系?請給出證明過程;
●類比探索:
在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內側作等腰直角三角形,如圖3所示,M是BC的中點,連接MD和ME,試判斷△MED的形狀.
答: .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com