精英家教網 > 初中數學 > 題目詳情
某學;顒有〗M在作三角形的拓展圖形,研究其性質時,經歷了如下過程:
●操作發(fā)現:
在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側作等腰直角三角形,如圖1所示,其中DF⊥AB于點F,EG⊥AC于點G,M是BC的中點,連接MD和ME,則下列結論正確的是______(填序號即可)
①AF=AG=AB;②MD=ME;③整個圖形是軸對稱圖形;④∠DAB=∠DMB.
●數學思考:
在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側作等腰直角三角形,如圖2所示,M是BC的中點,連接MD和ME,則MD與ME具有怎樣的數量和位置關系?請給出證明過程;
●類比探究:
在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內側作等腰直角三角形,如圖3所示,M是BC的中點,連接MD和ME,試判斷△MED的形狀.答:______.

【答案】分析:操作發(fā)現:由條件可以通過三角形全等和軸對稱的性質,直角三角形的性質就可以得出結論;
數學思考:作AB、AC的中點F、G,連接DF,MF,EG,MG,根據三角形的中位線的性質和等腰直角三角形的性質就可以得出四邊形AFMG是平行四邊形,從而得出△DFM≌△MGE,根據其性質就可以得出結論;
類比探究:作AB、AC的中點F、G,連接DF,MF,EG,MG,DF和MG相交于H,根據三角形的中位線的性質K可以得出△DFM≌△MGE,由全等三角形的性質就可以得出結論;
解答:解:●操作發(fā)現:
∵△ADB和△AEC是等腰直角三角形,
∴∠ABD=∠DAB=∠ACE=∠EAC=45°,∠ADB=∠AEC=90°
∵在△ADB和△AEC中,

∴△ADB≌△AEC(AAS),
∴BD=CE,AD=AE,
∵DF⊥AB于點F,EG⊥AC于點G,
∴AF=BF=DF=AB,AG=GC=GE=AC.
∵AB=AC,
∴AF=AG=AB,故①正確;
∵M是BC的中點,
∴BM=CM.
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABC+∠ABD=∠ACB+∠ACE,
即∠DBM=∠ECM.
∵在△DBM和△ECM中

∴△DBM≌△ECM(SAS),
∴MD=ME.故②正確;
連接AM,根據前面的證明可以得出將圖形1,沿AM對折左右兩部分能完全重合,
∴整個圖形是軸對稱圖形,故③正確.
∵AB=AC,BM=CM,
∴AM⊥BC,
∴∠AMB=∠AMC=90°,
∵∠ADM=90°,
∴四邊形ADBM四點共圓,
∴∠AMD=∠ABD=45°.
∵AM是對稱軸,
∴∠AME=∠AMD=45°,
∴∠DME=90°,
∴MD⊥ME,故④正確,
故答案為:①②③④

●數學思考:
MD=ME,MD⊥ME.
理由:作AB、AC的中點F、G,連接DF,MF,EG,MG,
∴AF=AB,AG=AC.
∵△ABD和△AEC是等腰直角三角形,
∴DF⊥AB,DF=AB,EG⊥AC,EG=AC,
∴∠AFD=∠AGE=90°,DF=AF,GE=AG.
∵M是BC的中點,
∴MF∥AC,MG∥AB,
∴四邊形AFMG是平行四邊形,
∴AG=MF,MG=AF,∠AFM=∠AGM.
∴MF=GE,DF=MG,∠AFM+∠AFD=∠AGM+∠AGE,
∴∠DFM=∠MGE.
∵在△DFM和△MGE中,
,
∴△DFM≌△MGE(SAS),
∴DM=ME,∠FDM=GME.
∵MG∥AB,
∴∠GMH=∠BHM.
∵∠BHM=90°+∠FDM,
∴∠BHM=90°+∠GME,
∵∠BHM=∠DME+∠GME,
∴∠DME+∠GME=90°+∠GME,
即∠DME=90°,
∴MD⊥ME.
∴DM=ME,MD⊥ME;

●類比探究:
∵點M、F、G分別是BC、AB、AC的中點,
∴MF∥AC,MF=AC,MG∥AB,MG=AB,
∴四邊形MFAG是平行四邊形,
∴MG=AF,MF=AG.∠AFM=∠AGM
∵△ADB和△AEC是等腰直角三角形,
∴DF=AF,GE=AG,∠AFD=∠BFD=∠AGE=90°
∴MF=EG,DF=MG,∠AFM-∠AFD=∠AGM-∠AGE,
即∠DFM=∠MGE.
∵在△DFM和△MGE中

∴△DFM≌△MGE(SAS),
∴MD=ME,∠MDF=∠EMG.
∵MG∥AB,
∴∠MHD=∠BFD=90°,
∴∠HMD+∠MDF=90°,
∴∠HMD+∠EMG=90°,
即∠DME=90°,
∴△DME為等腰直角三角形.
點評:本題考查了等腰直角三角形的性質的運用,等腰三角形的性質的運用,全等三角形的判定及性質的運用,三角形的中位線的性質的運用,直角三角形的斜邊上的中線的性質的運用,平行四邊形的判定及性質的運用,解答時根據三角形的中位線的性質制造全等三角形是解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•江西)某學;顒有〗M在作三角形的拓展圖形,研究其性質時,經歷了如下過程:
●操作發(fā)現:
在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側作等腰直角三角形,如圖1所示,其中DF⊥AB于點F,EG⊥AC于點G,M是BC的中點,連接MD和ME,則下列結論正確的是
①②③④
①②③④
(填序號即可)
①AF=AG=
12
AB;②MD=ME;③整個圖形是軸對稱圖形;④∠DAB=∠DMB.
●數學思考:
在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側作等腰直角三角形,如圖2所示,M是BC的中點,連接MD和ME,則MD與ME具有怎樣的數量和位置關系?請給出證明過程;
●類比探究:
在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內側作等腰直角三角形,如圖3所示,M是BC的中點,連接MD和ME,試判斷△MED的形狀.答:
等腰直角三角形
等腰直角三角形

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•南昌)某數學活動小組在作三角形的拓展圖形,研究其性質時,經歷了如下過程:
(1)操作發(fā)現:在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側作等腰直角三角形,如圖1所示,其中DF⊥AB于點F,EG⊥AC于點G,M是BC的中點,連接MD和ME,則下列結論正確的是
①②③④
①②③④
(填序號即可)
①AF=AG=
12
AB;②MD=ME;③整個圖形是軸對稱圖形;④MD⊥ME.
(2)數學思考:在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側作等腰直角三角形,如圖2所示,M是BC的中點,連接MD和ME,則MD和ME具有怎樣的數量關系?請給出證明過程;
(3)類比探究:
(i)在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內側作等腰直角三角形,如圖3所示,M是BC的中點,連接MD和ME,試判斷△MED的形狀.答:
等腰直角三角形
等腰直角三角形

(ii)在三邊互不相等的△ABC中(見備用圖),仍分別以AB和AC為斜邊,向△ABC的內側作(非等腰)直角三角形ABD和(非等腰)直角三角形ACE,M是BC的中點,連接MD和ME,要使(2)中的結論此時仍然成立,你認為需增加一個什么樣的條件?(限用題中字母表示)并說明理由.

查看答案和解析>>

科目:初中數學 來源:2013年初中畢業(yè)升學考試(江西卷)數學(解析版) 題型:解答題

某數學活動小組在作三角形的拓展圖形,研究其性質時,經歷了如下過程:

●操作發(fā)現:

在等腰△ABC中,AB=AC,分別以AB和AC為斜邊,向△ABC的外側作等腰直角三角形,如圖1所示,其中DF⊥AB于點F,EG⊥AC于點G,M是BC的中點,連接MD和ME,則下列結論正確的是        (填序號即可)

①AF=AG=AB;②MD=ME;③整個圖形是軸對稱圖形;④∠DAB=∠DMB.

●數學思考:

在任意△ABC中,分別以AB和AC為斜邊,向△ABC的外側作等腰直角三角形,如圖2所示,M是BC的中點,連接MD和ME,則MD和ME具有怎樣的數量和位置關系?請給出證明過程;

●類比探索:

在任意△ABC中,仍分別以AB和AC為斜邊,向△ABC的內側作等腰直角三角形,如圖3所示,M是BC的中點,連接MD和ME,試判斷△MED的形狀.

答:       

 

查看答案和解析>>

科目:初中數學 來源: 題型:

某數學活動小組在作三角形的拓展圖形,研究其性質時,經歷了如下過程:

  ●操作發(fā)現:

      在等腰△ABC中,AB=AC,分別以ABAC為斜邊,向△ABC的外側作等腰直角三角形,如圖1所示,其中DFAB于點FEGAC于點G,MBC的中點,連接MDME,則下列結論正確的是         (填序號即可)

     ①AF=AG=AB;②MD=ME;③整個圖形是軸對稱圖形;④∠DAB=∠DMB

●數學思考:

  在任意△ABC中,分別以ABAC為斜邊,向△ABC外側作等腰直角三角形,如圖2所示,MBC的中點,連接MDME,則MDME具有怎樣的數量和位置關系?請給出證明過程;

●類比探索:

  在任意△ABC中,仍分別以ABAC為斜邊,向△ABC的內側作等腰直角三角形,如圖3所示,MBC的中點,連接MDME,試判斷△MED的形狀.

  答:          

查看答案和解析>>

同步練習冊答案