ABCDE是正五邊形,則圖中的三角形有________個(gè).

35
分析:不在同一直線上三點(diǎn)可以確定一個(gè)三角形,以正五邊形的每條邊為邊的三角形數(shù)量相同,數(shù)出以其中一個(gè)為邊的三角形和不以五邊形的邊為邊的三角形的個(gè)數(shù),即可求得.
解答:以AB為邊的三角形有5個(gè),
則以五邊形的邊為邊的三角形有5×5=25個(gè).
三邊都不是五邊形的邊的三角形有10個(gè).
則圖中的三角形有35個(gè).
故答案是:35.
點(diǎn)評(píng):本題主要考查了三角形的認(rèn)識(shí),按正確的順序計(jì)算三角形的個(gè)數(shù)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,五邊形ABCDE是正五邊形,曲線EFGHIJ…叫做“正五邊形ABCDE的漸開線”,其中EF、FG、GH、HI、IJ…的圓心依次按A、B、C、D、E循環(huán),它們依次相連接.如果AB=1,那么曲線EFGHIJ的長(zhǎng)度為
 
.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、ABCDE是正五邊形,則圖中的三角形有
35
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

29、如圖,AC、AD是正五邊形ABCDE的兩條對(duì)角線.
(1)求∠CAD的度數(shù).請(qǐng)你完成下面的推理計(jì)算過(guò)程:
解:因?yàn)槲暹呅蜛BCDE的內(nèi)角和為
540
度,
又因?yàn)槲暹呅蜛BCDE是正五邊形,所以它的各個(gè)內(nèi)角相等、各邊相等.
所以∠B=∠BAE=∠E=
108
度.
所以∠BAC=∠BCA=
36
度.
由上面的同樣道理可以推出∠EAD=
36
度.
所以∠CAD=
36
度.
(2)請(qǐng)你分析判斷AC與AD的大小關(guān)系,并推理說(shuō)明道理(在(1)中的結(jié)論可直接引用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2012•青島模擬)同學(xué)們已經(jīng)認(rèn)識(shí)了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關(guān)的幾個(gè)概念.如正六邊形ABCDEF各邊對(duì)稱軸的交點(diǎn)O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問(wèn)題:正多邊形內(nèi)任意一點(diǎn)到各邊距離之和與這個(gè)正多邊形的半徑R和中心角有什么關(guān)系?
探索發(fā)現(xiàn):
(1)為了解決這個(gè)問(wèn)題,我們不妨從最簡(jiǎn)單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點(diǎn),P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關(guān)系.
解:設(shè)△ABC的邊長(zhǎng)是a,面積為S,顯然S=
1
2
a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個(gè)全等的等腰三角形,過(guò)點(diǎn)O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內(nèi)任意一點(diǎn),P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過(guò)程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關(guān)系.
(3)類比上述探索過(guò)程,直接填寫結(jié)論
正六邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n邊形(半徑是R)內(nèi)任意一點(diǎn)P到各邊距離之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,五邊形ABCDE是正五邊形,有一點(diǎn)P,滿足兩個(gè)條件:△BCD與△PCD面積相等,且△ABP是等腰三角形,則以下四個(gè)命題正確的是
②③
②③

①當(dāng)點(diǎn)P在正五邊形ABCDE的內(nèi)部時(shí),滿足條件的點(diǎn)P有三個(gè);
②當(dāng)點(diǎn)P在正五邊形ABCDE的邊上時(shí),點(diǎn)P與點(diǎn)E重合;
③當(dāng)點(diǎn)P在正五邊形ABCDE的外部時(shí),滿足條件的點(diǎn)P只有一個(gè);
④在正五邊形ABCDE的平面內(nèi),滿足條件的點(diǎn)P有五個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案