閱讀第(1)題的解答過程,再解答第(2)題.

(1)已知x+x-1=5,求x3+x-3的值.

解:∵x2+x-2=(x+x-1)2-2=52-2=23

∴x3+x-3=(x+x-1)(x2+x-2)-(x·x-2+x-1·x2)=(x+x-1)(x2+x-2)-(x-1+x)=5×23-5=110.

(2)若x+x-1=3,求x5+x-5的值.

答案:
解析:

  解答:∵x2+x-2=(x+x-1)2-2=9-2=7

  x3+x-3=(x2+x-2)(x+x-1)-(x·x-2+x-1·x2)=7×3-3=18.

  ∴x5+x5=(x3+x-3)(x2+x-2)-(x2·x-2+x-2x3)=18×7-3=123.


提示:

  名師導引:仿照第(1)題的解答過程,先求x2+x-2和x3+x-3的值,而x5+x-5=(x3+x-3)(x2+x-2)-(x2·x-3+x-2·x3),再把x2+x-2和x3+x-3代入即可求出.

  探究點:如何把需要解答的問題轉化為閱讀材料中的問題是解決本題的關鍵.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

先閱讀下列第(1)題的解答過程,再解第(2)題.
(1)已知實數(shù)a、b滿足a2=2-2a,b2=2-2b,且a≠b,求
a
b
+
b
a
的值.
解:由已知得:a2+2a-2=0,b2+2b-2=0,且a≠b,故a、b是方程:x2+2x-2=0的兩個不相等的實數(shù)根,由根與系數(shù)的關系得:a+b=-2,ab=-2.
a
b
+
b
a
=
(a+b)2-2ab
ab
=-4.
(2)已知p2-2p-5=0,5q2+2q-1=0,其中p、q為實數(shù),求p2+
1
q2
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

加試題(本小題滿分20分,其中(1)、(2)、(3)題各3分,(4)題11分)
(1)一個正數(shù)的平方根為3-a和2a+3,則這個正數(shù)是
81
81

(2)若x2+2x+y2-6y+10=0,則xy=
-1
-1

(3)已知a,b分別是6-
13
的整數(shù)部分和小數(shù)部分,則2a-b=
13
13

(4)閱讀下面的問題,并解答問題:
1)如圖1,等邊△ABC內(nèi)有一點P,若點P到頂點A,B,C的距離分別為3,4,5,求∠APB的度數(shù)是多少?(請在下列橫線上填上合適的答案)
分析:由于PA,PB,PC不在同一個三角形中,為了解決本題我們可以將△ABP繞頂點A逆時針旋轉到△ACP′處,此時可以利用旋轉的特征等知識得到:
  ①∠APB=∠AP′C=∠AP′P+∠PP′C;
  ②AP=AP′,且∠PAP′=
60
60
度,所以△APP′為
等邊
等邊
三角形,則∠AP′P=
60
60
度;
  ③P′C=BP=4,P′P=AP=3,PC=5,所以△PP′C為
直角
直角
三角形,則∠PP′C=
90
90
度,從而得到∠APB=
150
150
度.
 2)請你利用第1)題的解答方法,完成下面問題:
如圖2,在△ABC中,∠CAB=90°,AB=AC,E、F為邊BC上的點,且∠EAF=45°,試說明:EF2=BE2+FC2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

先閱讀第(1)題的解答過程,然后再解第(2)題.
(1)已知多項式2x3-x2+m有一個因式是2x+1,求m的值.
解法一:設2x3-x2+m=(2x+1)(x2+ax+b),
則:2x3-x2+m=2x3+(2a+1)x2+(a+2b)x+b
比較系數(shù)得
2a+1=-1
a+2b=0
b=m
,解得
a=-1
b=
1
2
m=
1
2
,∴m=
1
2

解法二:設2x3-x2+m=A•(2x+1)(A為整式)
由于上式為恒等式,為方便計算了取x=-
1
2

(-
1
2
)3-(-
1
2
)2+m
=0,故 m=
1
2

(2)已知x4+mx3+nx-16有因式(x-1)和(x-2),求m、n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

閱讀下面第(1)題的解答過程,然后解答第(2)題.
(1)已知-2xm+5ny5與4x2ym-3n是同類項,求m+n的值.
解:根據(jù)同類項的意義,可知x的指數(shù)相同,即:m+5n=2.y的指數(shù)也相同,即m-3n=5.
所以:(m+5n)+(m-3n)=2+5,即:2m+2n=2(m+n)=7
所以:m+n=
7
2

(2)已知xm-3ny7-
1
2
x3y3m+11n
是同類項,求m+2n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

(1)一個正數(shù)的平方根為3-a和2a+3,則這個正數(shù)是______
(2)若x2+2x+y2-6y+10=0,則xy=______
(3)已知a,b分別是6-數(shù)學公式的整數(shù)部分和小數(shù)部分,則2a-b=______
(4)閱讀下面的問題,并解答問題:
1)如圖1,等邊△ABC內(nèi)有一點P,若點P到頂點A,B,C的距離分別為3,4,5,求∠APB的度數(shù)是多少?(請在下列橫線上填上合適的答案)
分析:由于PA,PB,PC不在同一個三角形中,為了解決本題我們可以將△ABP繞頂點A逆時針旋轉到△ACP′處,此時可以利用旋轉的特征等知識得到:
  ①∠APB=∠AP′C=∠AP′P+∠PP′C;
  ②AP=AP′,且∠PAP′=______度,所以△APP′為______三角形,則∠AP′P=______度;
  ③P′C=BP=4,P′P=AP=3,PC=5,所以△PP′C為______三角形,則∠PP′C=______度,從而得到∠APB=______度.
 2)請你利用第1)題的解答方法,完成下面問題:
如圖2,在△ABC中,∠CAB=90°,AB=AC,E、F為邊BC上的點,且∠EAF=45°,試說明:EF2=BE2+FC2

查看答案和解析>>

同步練習冊答案