如圖,已知點A的坐標為(
3
,3),AB⊥x軸,垂足為B,連接OA,反比例函數(shù)y=
3
x
的圖象與線段OA、AB分別交于點C、D.若以點C為圓心,CA的k倍的長為半徑作圓,該圓與x軸相切,則k的值為
3+
3
4
3+
3
4
分析:先根據(jù)勾股定理求出OA的長,再利用待定系數(shù)法求出直線OA的解析式,故可得出C點坐標,過點C作CE⊥x軸于點E,則△OAB∽△OCE,再由相似三角形的對應邊成比例即可求出OC的長,進而得出CA的長,故可得出結論.
解答:解:∵點A的坐標為(
3
,3),AB⊥x軸,垂足為B,
∴OA=
AB2+OB2
=
32+(
3
)
2
=2
3

設直線OA的解析式為y=kx(k≠0),
∵點A的坐標為(
3
,3),
3
k=3,解得k=
3
,
∴直線OA的解析式為y=
3
x(k≠0),
y=
3
x
y=
3
x
,解得
x=1
y=
3
,
∴C(1,
3
),
過點C作CE⊥x軸于點E,
∵AB⊥x軸,
∴△OAB∽△OCE,
OC
OA
=
CE
AB
,即
OC
2
3
=
3
3
,解得OC=2,
∴CA=OA-OC=2
3
-2=2(1-
3
),
∵以點C為圓心,CA的k倍的長為半徑作圓,該圓與x軸相切,
∴kCA=CE,即2(1-
3
)=
3
,解得k=
3+
3
4

故答案為:
3+
3
4
點評:本題考查的是反比例函數(shù)綜合題,熟知反比例函數(shù)的性質是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點F的坐標為(3,0),點A,B分別是某函數(shù)圖象與x軸、y軸的交點,點P是此圖象上的一動點.設點P的橫坐標為x,PF的長為d,且d與x之間滿足關系:d=5-
35
x(0≤x≤5),給出以下四個結論:①AF=2;②BF=5;③OA=5;④OB=3.其中正確結論的序號是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點A的坐標為(0,1),點B的坐標為(
3
2
,-2),點P在直線y=-x上運動,當|PA-PB|最大時點P的坐標為( 。
A、(2,-2)
B、(4,-4)
C、(
5
2
,-
5
2
D、(5,-5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點A的坐標為(
3
,3),AB丄x軸,垂足為B,連接OA,反比例函數(shù)y=
k
x
(k>0)的圖象與線段OA、AB分別交于點C、D.若AB=3BD,以點C為圓心,CA的
5
4
倍的長為半徑作圓,則該圓與x軸的位置關系是
 
(填”相離”,“相切”或“相交“).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點B的坐標為(6,9),點A的坐標為(6,6),點P為⊙A上一動點,PB的延長線交⊙A于點N、直線CD⊥AP于點C,交PN于點D,交⊙A于E、F兩點,且PC:CA=2:3.
(1)當點P運動使得點E為劣弧
PN
的中點時,求證:DF=DN;
(2)在(1)的條件下求tan∠CDP的值;
(3)當⊙A的半徑為5,且△APD的面積取得最大值時,求點P的坐標.

查看答案和解析>>

同步練習冊答案