23、已知:如圖,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延長(zhǎng)線(xiàn)于E,∠1=∠2.
求證:AD平分∠BAC,填寫(xiě)分析和證明中的空白.
分析:要證明AD平分∠BAC,只要證明
∠BAD
=
∠CAD

而已知∠1=∠2,所以應(yīng)聯(lián)想這兩個(gè)角分別和∠1、∠2的關(guān)系,由已知BC的兩條垂線(xiàn)可推出
EF
AD
,這時(shí)再觀察這兩對(duì)角的關(guān)系已不難得到結(jié)論.
證明:∵AD⊥BC,EF⊥BC(已知)
EF
AD
在同一平面內(nèi),垂直與同一直線(xiàn)的兩直線(xiàn)平行

∠1
=
∠BAD
(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等),
∠2
=
∠CAD
(兩直線(xiàn)平行,同位角相等)
∠1=∠2
(已知)
∠BAD=∠CAD
,即AD平分∠BAC(
角平分線(xiàn)的定義
分析:要證明AD平分∠BAC,只要證明∠BAD=∠CAD,而已知∠1=∠2,所以應(yīng)聯(lián)想這兩個(gè)角分別和∠1、∠2的關(guān)系,由已知BC的兩條垂線(xiàn)可推出EF∥AD,這時(shí)再觀察這兩對(duì)角的關(guān)系已不難得到結(jié)論.
解答:證明:∵AD⊥BC,EF⊥BC(已知)
∴EF∥AD(在同一平面內(nèi),垂直與同一直線(xiàn)的兩直線(xiàn)平行)
∴∠1=∠BAD(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等)
∠2=∠CAD(兩直線(xiàn)平行,同位角相等)
∵∠1=∠2(已知)
∴∠BAD=∠CAD,
即AD平分∠BAC(角平分線(xiàn)的定義).
點(diǎn)評(píng):此題考查了角平分線(xiàn)的定義,平行線(xiàn)的性質(zhì)及判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,AD∥BC,ED∥BF,且AF=CE.
求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、已知,如圖,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AD=BC,AC=BD.試判斷OD、OC的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,AD∥BC,∠A=90°,AD=BE,∠EDC=∠ECD,請(qǐng)你說(shuō)明下列結(jié)論成立的理由:(1)△AED≌△BCE,(2)AB=AD+BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)題意填空:
已知,如圖,AD∥BC,∠BAD=∠BCD,求證:AB∥CD.
證明:∵AD∥BC(已知)
∴∠1=
∠2(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等),
∠2(兩直線(xiàn)平行,內(nèi)錯(cuò)角相等),

又∵∠BAD=∠BCD ( 已知 )
∴∠BAD-∠1=∠BCD-∠2
(等式的性質(zhì))
(等式的性質(zhì))

即:∠3=∠4
AB∥CD(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行)
AB∥CD(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行)

查看答案和解析>>

同步練習(xí)冊(cè)答案