已知菱形ABCD的邊長為6,∠A=60°,如果點P是菱形內(nèi)一點,且PB=PD=2,那么AP的長為   
【答案】分析:根據(jù)題意得,應(yīng)分P與A在BD的同側(cè)與異側(cè)兩種情況進行討論.
解答:解:當(dāng)P與A在BD的異側(cè)時:連接AP交BD于M,
∵AD=AB,DP=BP,
∴AP⊥BD(到線段兩端距離相等的點在垂直平分線上),
在直角△ABM中,∠BAM=30°,
∴AM=AB•cos30°=3,BM=AB•sin30°=3,
∴PM==,
∴AP=AM+PM=4
當(dāng)P與A在BD的同側(cè)時:連接AP并延長AP交BD于點M
AP=AM-PM=2
當(dāng)P與M重合時,PD=PB=3,與PB=PD=2矛盾,舍去.
AP的長為4或2
故答案為4或2
點評:本題注意到應(yīng)分兩種情況討論,并且注意兩種情況都存在關(guān)系A(chǔ)P⊥BD,這是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知菱形ABCD的邊長為10cm,∠BAD=120°,則菱形的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:“最值問題”是數(shù)學(xué)中的一類較具挑戰(zhàn)性的問題.其實,數(shù)學(xué)史上也有不少相關(guān)的故事,如下即為其中較為經(jīng)典的一則:海倫是古希臘精通數(shù)學(xué)、物理的學(xué)者,相傳有位將軍曾向他請教一個問題--如圖1,從A點出發(fā),到筆直的河岸l去飲馬,然后再去B地,走什么樣的路線最短呢?海倫輕松地給出了答案:作點A關(guān)于直線l的對稱點A′,連接A′B交l于點P,則PA+PB=A′B 的值最。
解答問題:
(1)如圖2,⊙O的半徑為2,點A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一動點,求PA+PC的最小值;
(2)如圖3,已知菱形ABCD的邊長為6,∠DAB=60°.將此菱形放置于平面直角坐標(biāo)系中,各頂點恰好在坐標(biāo)軸上.現(xiàn)有一動點P從點A出發(fā),以每秒2個單位的速度,沿A→C的方向,向點C運動.當(dāng)?shù)竭_(dá)點C后,立即以相同的速度返回,返回途中,當(dāng)運動到x軸上某一點M時,立即以每秒1個單位的速度,沿M→B的方向,向點B運動.當(dāng)?shù)竭_(dá)點B時,整個運動停止.
①為使點P能在最短的時間內(nèi)到達(dá)點B處,則點M的位置應(yīng)如何確定?
②在①的條件下,設(shè)點P的運動時間為t(s),△PAB的面積為S,在整個運動過程中,試求S與t之間的函數(shù)關(guān)系式,并指出自變量t的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知菱形ABCD的邊長為6,有一內(nèi)角為60°,M為CD邊上的中點,P為對角線AC上的動點,則PD+PM的最小值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•盤錦)已知菱形ABCD的邊長為5,∠DAB=60°.將菱形ABCD繞著A逆時針旋轉(zhuǎn)得到菱形AEFG,設(shè)∠EAB=α,且0°<α<90°,連接DG、BE、CE、CF.
(1)如圖(1),求證:△AGD≌△AEB;
(2)當(dāng)α=60°時,在圖(2)中畫出圖形并求出線段CF的長;
(3)若∠CEF=90°,在圖(3)中畫出圖形并求出△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知菱形ABCD的邊AB=2cm,它的周長為
8cm
8cm

查看答案和解析>>

同步練習(xí)冊答案