如圖,△P1OA1,△P2A1A2,△P3A2A3…△PnAn-1An都是等腰直角三角形,點(diǎn)P1、P2、P3…Pn都在函數(shù)y=(x>0)的圖象上,斜邊OA1、A1A2、A2A3…An-1An都在x軸上.
(1)求A1、A2點(diǎn)的坐標(biāo);
(2)猜想An點(diǎn)的坐標(biāo).(直接寫出結(jié)果即可)

【答案】分析:(1)首先根據(jù)等腰直角三角形的性質(zhì),知點(diǎn)P1的橫、縱坐標(biāo)相等,再結(jié)合雙曲線的解析式得到點(diǎn)P1的坐標(biāo)是(2,2),則根據(jù)等腰三角形的三線合一求得點(diǎn)A1的坐標(biāo);同樣根據(jù)等腰直角三角形的性質(zhì)、點(diǎn)A1的坐標(biāo)和雙曲線的解析式求得A2點(diǎn)的坐標(biāo);
(2)根據(jù)A1、A2點(diǎn)的坐標(biāo)特征即可推而廣之.
解答:解:(1)可設(shè)點(diǎn)P1(x,y),
根據(jù)等腰直角三角形的性質(zhì)可得:x=y,
又∵y=,
則x2=4,
∴x=±2(負(fù)值舍去),
再根據(jù)等腰三角形的三線合一,得A1的坐標(biāo)是(4,0),
設(shè)點(diǎn)P2的坐標(biāo)是(4+y,y),又∵y=,則y(4+y)=4,即y2+4y-4=0
解得,y1=-2+2,y2=-2-2
∵y>0,
∴y=2-2,
再根據(jù)等腰三角形的三線合一,得A2的坐標(biāo)是(4,0);

(2)可以再進(jìn)一步求得點(diǎn)A3的坐標(biāo)是(4,0),推而廣之,則An點(diǎn)的坐標(biāo)是(4,0).
點(diǎn)評:本題考查了反比例函數(shù)的綜合應(yīng)用,解決此題的關(guān)鍵是要根據(jù)等腰直角三角形的性質(zhì)以及反比例函數(shù)的解析式進(jìn)行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△P1OA1,△P2A1A2是等腰直角三角形,點(diǎn)P1,P2在函數(shù)y=
4x
(x>0)的圖象上,斜邊OA1,A1A2都在x軸上,則點(diǎn)A2的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△P1OA1、△P2A1A2是等腰直角三角形,點(diǎn)P1、P2在函數(shù)y=
4
x
(x>0)
的圖象上,斜邊OA1、A1A2都在x軸上,則點(diǎn)A2的坐標(biāo)是(  )
A、(2
2
-2
,0)
B、(2
2
+2
,0)
C、(4
2
,0)
D、(2
2
,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△P1OA1,△P2A1A2,△P3A2A3,…,是等腰直角三角形,點(diǎn)P1,P2,P3,…,在反比列函數(shù)y=
4x
的圖象上,斜邊OA1,A1A2,A2A3,…都在x軸上,則點(diǎn)A2的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△P1OA1、△P2A1A2、△P3A2A3、…、△P100A99A100是等腰直角三角形,點(diǎn)P1、P2、P3、…、P100在反比列函數(shù)y=
4x
的圖象上,斜邊OA1、A1A2、A2A3、…、A99A100都在x軸上,則點(diǎn)A100的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△P1OA1、△P2A1A2是等腰直角三角形,點(diǎn)P1、P2在函數(shù)y=
4
x
(x>0)
的圖象上,斜邊OA1、A1A2都在x軸上,則O
A
2
2
等于( 。

查看答案和解析>>

同步練習(xí)冊答案