【題目】如圖所示,∠EOF=60°,PAOF,PBOEPCOF于點(diǎn)C,求∠BPC的度數(shù).

【答案】30°.

【解析】試題分析:由PBOE可得∠PBF=EOF,PAOF可得∠APB=PBF,APC=PCF

因?yàn)椤?/span>EOF=60°,所以∠APB=PBF=60°,由PCOF于點(diǎn)C可得∠APC=PCF=90°

所以∠BPC=APCAPB=90°-60°=30°.

試題解析:

解:∵PBOE,

∴∠PBF=EOF

PAOF,

∴∠APB=PBFAPC=PCF,

∵∠EOF=60°

∴∠APB=PBF=60°,

PCOF于點(diǎn)C

∴∠APC=PCF=90°.

∴∠BPC=APCAPB=90°-60°=30°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線AB與⊙O相切于B點(diǎn),C是⊙O與OA的交點(diǎn),點(diǎn)D是⊙O上的動(dòng)點(diǎn)(D與B,C不重合),若∠A=40°,則∠BDC的度數(shù)是( 。
A.25°或155°
B.50°或155°
C.25°或130°
D.50°或130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c交y軸于點(diǎn)C(0,4),對(duì)稱(chēng)軸x=2與x軸交于點(diǎn)D,頂點(diǎn)為M,且DM=OC+OD.

(1)求該拋物線的解析式;
(2)設(shè)點(diǎn)P(x,y)是第一象限內(nèi)該拋物線上的一個(gè)動(dòng)點(diǎn),△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)在(2)的條件下,若經(jīng)過(guò)點(diǎn)P的直線PE與y軸交于點(diǎn)E,是否存在以O(shè)、P、E為頂點(diǎn)的三角形與△OPD全等?若存在,請(qǐng)求出直線PE的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“中秋節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),歷來(lái)都有賞月,吃月餅的習(xí)俗.小明家吃過(guò)晚飯后,小明的母親在桌子上放了四個(gè)包裝紙盒完全一樣的月餅,它們分別是2個(gè)豆沙,1個(gè)蓮蓉和1個(gè)叉燒.
(1)小明隨機(jī)拿一個(gè)月餅,是蓮蓉的概率是多少?
(2)小明隨機(jī)拿2個(gè)月餅,請(qǐng)用樹(shù)形圖或列表的方法表示所有可能的結(jié)果,并計(jì)算出沒(méi)有拿到豆沙月餅的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,MN是一條東西朝向的筆直的公路,C是位于該公路上的一個(gè)檢測(cè)點(diǎn)輛長(zhǎng)為9m的小貨車(chē)BD行駛在該公路上小王位于點(diǎn)A處觀察小貨車(chē),某時(shí)刻他發(fā)現(xiàn)車(chē)頭D、車(chē)尾B及檢測(cè)點(diǎn)C分別距離他10m、17m,2m

(1)過(guò)點(diǎn)AMN引垂線,垂足為E,請(qǐng)利用勾股定理分別找出線段AEDE、AEBE之間所滿(mǎn)足的數(shù)量關(guān)系;

(2)在上一問(wèn)的提示下,繼續(xù)完成下列問(wèn)題:

求線段DE的長(zhǎng)度;

該小貨車(chē)的車(chē)頭D距離檢測(cè)點(diǎn)C還有多少m?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,表示小王騎自行車(chē)和小李騎摩托車(chē)者沿相同的路線由甲地到乙地行駛過(guò)程的函數(shù)圖象,兩地相距80千米,請(qǐng)根據(jù)圖象解決下列問(wèn)題:

(1)哪一個(gè)人出發(fā)早?早多長(zhǎng)時(shí)間?哪一個(gè)人早到達(dá)目的地?早多長(zhǎng)時(shí)間?

(2)求出兩個(gè)人在途中行駛的速度是多少?

(3)分別求出表示自行車(chē)和摩托車(chē)行駛過(guò)程的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,D是邊AB上一點(diǎn),且∠A=2∠DCB.E是BC邊上的一點(diǎn),以EC為直徑的⊙O經(jīng)過(guò)點(diǎn)D.
(1)求證:AB是⊙O的切線;
(2)若CD的弦心距為1,BE=EO,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的兩條邊在坐標(biāo)軸上,OA=1,OC=2,現(xiàn)將此矩形向右平移,每次平移1個(gè)單位,若第1次平移得到的矩形的邊與反比例函數(shù)圖象有兩個(gè)交點(diǎn),它們的縱坐標(biāo)之差的絕對(duì)值為0.6,則第n次(n>1)平移得到的矩形的邊與該反比例函數(shù)圖象的兩個(gè)交點(diǎn)的縱坐標(biāo)之差的絕對(duì)值為(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D,E分別是三角形ABC的邊ABBC上的點(diǎn),DEAC,點(diǎn)FDE的延長(zhǎng)線上,且∠DFC=∠A

1)求證:ABCF;

2)若∠ACF比∠BDE40°,求∠BDE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案